There are two types of building air-conditioning systems, i.e., the individual air-conditioning system used for medium-scale buildings (with a capacity of 10,000 m² or less) and the highly automated central heating, ventilation, and air-conditioning system (central HVAC control system for short) used for large-scale buildings (in excess of 10,000 m²).

This catalog explains installations that constitute the central HVAC control system and control devices that properly control the installations to create a comfortable living space.

Some products in this catalog are only available in Japanese market. Please contact us for further information.
Introduction

Instrumentation devices developed for process automation (PA) have also been applied to factory automation (FA) and have greatly expanded the use of automation. They are now widely used for building automation (BA), including central HVAC control systems.

We developed the BA-dedicated Direct Digital Controller (DDC) and solved common problems to a great extent in the general-purpose programmable logic controller (PLC).

Furthermore, we have prepared remote I/O modules specialized for building control and is convinced that its instrumentation devices have come to the point where they can serve well for the design labor saving of every BA system integrator (SI) and the systematic maintenance of BA.

We would like to recommend each SI to consider the adoption of our open network DDC and remote I/O products.

Table of Contents

Chapter 1 Building Automation System (BAS) and Central HVAC Control

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Building Automation System (BAS) and Central HVAC Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Building Automation System</td>
</tr>
<tr>
<td>1-2</td>
<td>Central HVAC Control System</td>
</tr>
</tbody>
</table>

Chapter 2 Main Units Comprising Central HVAC Control

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Main Units Comprising Central HVAC Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>AHU (Air Handling Unit)</td>
</tr>
<tr>
<td>2-2</td>
<td>VAV (Variable Air Volume)</td>
</tr>
<tr>
<td>2-3</td>
<td>FCU (Fan Coil Unit)</td>
</tr>
<tr>
<td>2-4</td>
<td>Heat Source System</td>
</tr>
</tbody>
</table>

Chapter 3 Open Network for Air-conditioning Control System

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Open Network for Air-conditioning Control System</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Modbus Network Configuration</td>
</tr>
<tr>
<td>3-2</td>
<td>LONWORKS Network Configuration</td>
</tr>
<tr>
<td>3-3</td>
<td>BACnet Network Configuration</td>
</tr>
</tbody>
</table>

Chapter 4 BA Components

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>BA Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Open Network DDC with Full of Useful Unique Functions Unavailable to General-purpose PLCs</td>
</tr>
<tr>
<td>4-2</td>
<td>VAV-dedicated Open Network Controller (Model: BA9x-VAV)</td>
</tr>
<tr>
<td>4-3</td>
<td>FCU-dedicated Open Network Controller (Model: BA9x-FCU)</td>
</tr>
<tr>
<td>4-4</td>
<td>I/O Modules Dedicated to BA are Available for Remote I/O R3 Series</td>
</tr>
<tr>
<td>4-5</td>
<td>Remote I/O Compatible with BACnet Building Automation Network</td>
</tr>
<tr>
<td>4-6</td>
<td>Open-network-dedicated Controllers (Multi-function PID Controller and Temperature Controller)</td>
</tr>
<tr>
<td>4-7</td>
<td>Compact Linear Motion Electric Actuators MSP Series</td>
</tr>
<tr>
<td>4-8</td>
<td>Signal Conditioners and Other Products Generally Used for Air-conditioning Control</td>
</tr>
</tbody>
</table>
Chapter 1 Building Automation System (BAS) and Central HVAC Control

1-1 Building Automation System (BAS)

Example for Large-scale Building

You can make future operation plans from collected data.

The actual operation of the BAS is done here.

A subsystem is provided to each of the installations of a large-scale building, including the air-conditioning equipment, electric equipment, and sanitation equipment, and the consolidated management system is in control of all the subsystems of the entire building.

In the case of medium-scale or smaller buildings, it is common to use a system to control all the installations, including air-conditioning equipment, electric equipment, and sanitation equipment, grouped together.
The central HVAC control system is an air-conditioning system, in which a heat source system, including boilers, chillers, and conveying pumps concentrated in one place, produces and sends chilled water, hot water, or steam to the heat exchangers, e.g., air handling units and fan coil units (FCUs) on each floor, thus performing the cooling or heating of the entire building.

The central HVAC control system requires the initial cost and maintenance cost of the heat source system, and also requires an installation space (usually on a basement floor). Therefore, it is adopted for relatively large-scale office buildings, commercial facilities, hospitals, and hotels with a total floor area in excess of 10,000 m². In urban areas, the regional heating and cooling system is widely adopted as well, which receives chilled water, hot water, or steam from heat supply facilities (a district heating and cooling plant) and does not have heat source equipment in the buildings.

In this catalog, the air handling unit is referred to as the AHU, the fan coil unit is referred to as the FCU, and the variable air volume unit is referred to as the VAV, each of which is individually explained.

Most buildings have an underground heat source system. Pumps send chilled water and hot water from here to the entire building.
Basic Equipment for Central System

[Legend]
- BACnet/IP
- Modbus-RTU and BACnet MS/TP
- Individual wiring
- Chilled water supply pipe
- Chilled water return pipe
- Hot water supply pipe
- Hot water return pipe

[Section]
- AHU: Air Handling Unit (i.e., Air conditioner)
- VAV: Variable Air Volume (Variable air volume unit)
- FCU: Fan Coil Unit
- DDC: Direct Digital Controller

[Diagram]
- SCADA
- BACnet/IP
- Open Network DDC for Gateways
- Modbus-RTU, BACnet MS/TP
- Outside air
- Exhaust
- To other rooms
- Main Mechanical Room
- Sub Mechanical Room
- Filter Room
- Heat exchanger
- AHU
- Chiller
- Boiler
- Large Space
- Room Controller
- VAV Controller
- FCU Controller
- Ceiling
In order to create a comfortable living space that meets environmental standards, the AHU takes in outside air as well as air returning from each room, filters the air, performs heat treatment, and supplies treated air for the air conditioning to each room.

The AHU is of unit construction with an air filter, air heat exchanger, humidifier, and supply air fan in a metal casing, and is usually installed in a dedicated machine room.
The VAV is used to control the temperature inside the room by varying the supply of air volume. It sends the required air volume that corresponds to the current room temperature to the AHU controller. The AHU controller calculates the total required air volume of each VAV unit and also controls the rotation speed of the air supply fan to minimize motive energy. The VAV is installed in the ceiling of the room. A single AHU usually requires anywhere from five to twenty VAVs.

There will be no more complaints about overly cool areas and the system also helps to reduce power consumption.

The power consumption of the motor is proportional to the cube of the number of revolution. For instance, if the revolution speed of the air supply fan is reduced from 100% to 75% with the inverter, the power consumption will be reduced by 58%.
The FCU performs air conditioning in areas where temperature control is impossible only with the AHU, such as individually partitioned meeting rooms and areas on the window side easily affected by the outside air temperature. The FCU performs only temperature control and cannot perform humidity control. Furthermore, the FCU circulates only air. The AHU or an independent ventilator takes in fresh outdoor air.

There are two types of FCUs. One is a 4-pipe type that has independently a chilled water coil and hot water coil. The other is a 2-pipe type that has a coil that serves for both chilled water and hot water.

Perimeter Zone and Interior Zone

A floor with large square footage is divided into a perimeter zone on the window side susceptible to outside air and an interior zone barely affected by outside air.

In the perimeter zone, the air conditioning load differs between the south side exposed to sunlight and the north side not exposed to sunlight. The air-conditioning load also changes greatly in separated rooms, such as meeting rooms, depending on whether they are occupied or not. The FCU can control the temperature of each zone that cannot be done by an AHU only.
In the case of the open piping system, water drips from the piping if the pump system stops operating. In that case, the pressure sustaining valve is closed to prevent dripping. In the case of the closed piping system, water always remains in the piping, and no water drips with the system stopped.

The central HVAC control system uses chilled water, hot water, or steam as a cooling or heating medium. The heat source system uses a chiller or boiler to provide chilled water or hot water to be transported to the AHUs and FCUs in the building (if the heat source is steam, it is sent to each AHU through piping after the steam pressure is adjusted with a pressure reducing valve. In this case, the steam is not sent to the FCUs because the FCUs do not use steam.). There are two types of air-conditioning water piping for building air conditioning. One is an open piping system and the other is a closed piping system (the above is an example of a closed piping system). The method of transporting chilled water or hot water varies with each piping system. Each system performs high energy-saving controls, including control of the number of heat source machines (e.g., chillers and boilers) and pumps, and the inverter-employed control of pump revolutions.
Modbus is a simple protocol, and that is why Modbus can be applied to communication with various devices.

A general-purpose supervisory control and data acquisition (SCADA) can be used as a central monitoring device.

This DDC is dedicated to AHU control. Function blocks dedicated to air conditioning are available, which makes programming easier.

These controllers are dedicated to VAV and FCU control. They support various types of VAVs and FCUs.

We offer many types of I/O modules dedicated to BA.

What is Modbus?

Modbus is a communication protocol developed by Modicon (now Schneider Automation International S.A.S.) for PLCs. The specifications of Modbus are open to the public (*1). Modbus only defines a communication protocol and does not specify physical layers, such as communication media. There are two Modbus communication methods, i.e., a method in RTU mode using binary data and the other method in ASCII mode using character data. RS-232 and RS-485 are used as the physical layers of these modes. In addition, there is another communication method (Modbus/TCP communication), which incorporates Modbus protocol messages on the Ethernet network.

Modbus is widely used in the fields of BA, FA, PA, etc. because its protocol specifications are open to the public and very simple.

(*1) For the protocol specification (PI-MBUS-300 Rev.J), refer to https://modbus.org/.
3-2 LONWORKS Network Configuration

What is LONWORKS?

LONWORKS is a networking platform for intelligent distributed network systems and developed by Echelon Corporation, an American company. It is used in a wide range of fields all over the world, including BA, FA, home control, and electric and gas monitoring.

LONWORKS is characterized by distributed network systems. Network-connected nodes, such as sensors and actuators, have intelligence, and communicate with other nodes on the network and perform independent control. Therefore, each node incorporates an intelligent element called a neuron chip, where a control program is written.

The communication protocol of LONWORKS is called LONTALK and it is defined for the physical layer through to the application layer. Various dedicated transceivers (LON chips) are prepared for physical layer compatibility.

3-3 BACnet Network Configuration

What is BACnet?

BACnet is an ANSI/ISO standard promoted by the American Society of Heating, Refrigerating, and Air conditioning Engineers (ASHRAE), and is widely used as an open communication protocol for BA (*)

Two communications methods are available, i.e., BACnet LAN (a communication method using Ethernet, MS/TP, etc.) and BACnet/IP using Internet Protocol (IP), either of which is used according to the network layer to be used.

BACnet is characterized by physical devices (I/O devices) on the network and data that each device has, which are defined as objects (a set of abstracted data) and specifies services (standard procedures) that classify the purposes of accessing the objects. For this reason, manufacturers’ own interfaces are unnecessary, and the interoperation of devices of different manufacturers becomes easy.

(*) For the latest information on BACnet, refer to https://bacnet.org/.
The DDC is an autonomously distributed controller installed on site and communicates with the host SCADA and other control devices. Even if the network is shut down, the distributed controller will continue on-site control without being influenced.

Main Functions and Features of Open Network DDC

- Mounted onto the base of the remote I/O R3 Series to function as a DDC exclusively for air conditioning.
- The Remote I/O R3 Series handles many I/O points, with which a wide variety of I/O modules can be used.
 - Analog input: Up to 256 points
 - Analog output: Up to 256 points
 - Discrete input: Up to 1024 points
 - Discrete output: Up to 1024 points
- A programming language adopted conforms to international standard IEC 61131-3.
 - Recommended: Function Block Diagram (FBD)
- Dedicated function blocks are available for air conditioning control.

A DDC model of I/O integrated type is also available.

LONWORKS DDC BA Controller
Model: BA40CL1
- Analog input
 - DC Voltage: 2 points
 - RTD (2-wire): 2 points
- Discrete input: 4 points
- Analog output: 6 points
- Discrete output: 4 points
What are Function Blocks?

Contributing to efficiency improvements in the development of programs and the reduction of mistakes!

Function Blocks are repeatable programs that consist of blocks of frequently used logic and operations. They contribute to efficiency improvements in the development of programs and the reduction of programming errors.

This is an example of an enthalpy operation block. This block performs enthalpy operations by entering the dry bulb temperature and relative humidity or the dry bulb temperature and dew point temperature. There is no need to enter complicated operation formulas.

This is a PID operation block. By entering necessary parameters, such as set values and proportional band parameters, the block will output the operation result from the rVout terminal. There is no need to write complicated control programs.

Feature 1

The Function Block system can be adopted as a programming language.

Can I create a Function Block?

Anyone can easily make one. We can prepare complicated Function Blocks, such as those for enthalpy operations and also PID operations.
Advantages of Function Blocks

Function Blocks greatly reduce the number of steps necessary to write programs.

A ladder program requires a person to write many steps and takes time.

In the Function Block method, each block is used repeatedly, reducing concerns about bugs. Programming work can also be shared.

The program is easy to read for everyone.

I had to change an existing PLC ladder program for renovation work, but there was a problem. I could not figure out the program that someone else wrote.

A program written using the Function Block method consists of a combination of blocks that anyone can read.

Completed Function Blocks can be used repeatedly.

A ladder program is like a scroll, making it difficult to reuse the program that I took time to write.

I always make ladder programs from the beginning and they take time and cost money.

Time-proven Function Blocks do not need debugging. If engineers share blocks, they can reuse them for other projects.
A function block diagram is created by connecting each terminal of Functions and Function Blocks with wires. A program flows from left to right and from top to bottom. It has a structure that anyone can understand at a glance.

Software assets are accumulated.

Ladder programs do not have block unit specifications. It is hard to make devised programs a software asset.

Time-proven Function Blocks are important software assets for any company.

How do they differ from ladder programs?

A program can be completed by simply connecting Function Blocks with lines.

A function block diagram is created by connecting each terminal of Functions and Function Blocks with wires. A program flows from left to right and from top to bottom. It has a structure that anyone can understand at a glance.
Feature 2 Convenient function blocks are ready for use.

Example of a Function Block library for operation use

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Segment linearizer</td>
</tr>
<tr>
<td>2 Calorie calculation</td>
</tr>
<tr>
<td>3 System basic processing (system function)</td>
</tr>
<tr>
<td>4 Cyclic timer</td>
</tr>
<tr>
<td>5 Dual delay timer</td>
</tr>
<tr>
<td>6 Enthalpy operation</td>
</tr>
<tr>
<td>7 First order lag filter</td>
</tr>
<tr>
<td>8 Comparison with hysteresis</td>
</tr>
<tr>
<td>9 Supply air temperature optimization control</td>
</tr>
<tr>
<td>10 PID operation</td>
</tr>
<tr>
<td>11 Momentary output</td>
</tr>
<tr>
<td>12 Rate-of-change limit</td>
</tr>
<tr>
<td>13 Writing history records on variables</td>
</tr>
<tr>
<td>14 Pulse counter</td>
</tr>
<tr>
<td>15 Acquisition of current date and time</td>
</tr>
<tr>
<td>16 Weighted average</td>
</tr>
</tbody>
</table>

Many Function Blocks dedicated to air conditioning control are prepared. We have succeeded in drastically reducing the number of programming steps.

Feature 3 The Open Network DDC can use a wealth of I/O points of Remote I/O R3 Series.

Not many analog I/O types are available to the PLC. A preprocessing converter is always required, which results in a cost increase.

The open network DDC can use a wealth of I/O points of the Remote I/O R3 Series. Furthermore, modules for BA, including the Calorie meter and the Valve positioner module, are also available.

An amazingly wide variety of models are available.

Multi-channel, Scalable Remote I/O R3 Series

DC mV, V, mA Input 24 models
Sensor Input 19 models
Power I/O 16 models
Analog Output 7 models
Pulse I/O 13 models
Alarm 7 models
Discrete I/O 22 models
BA Control 9 models
BCD Code I/O 2 models
Temperature Control 1 model

For details of the Remote I/O R3 Series, see 4-4 in Chapter 4 on page 20.
Feature 4 Sample programs (*3) for standard AHU control are available.

Sample Programs

Seven sample programs for standard AHU control are available. Using similar instrumentation patterns as templates will reduce engineering efforts at the time of initial installation and facility remodeling.

<table>
<thead>
<tr>
<th>No.</th>
<th>Equipment configuration</th>
<th>Control contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chilled water and hot water (2-coil) system + Total heat exchanger</td>
<td>Indoor temperature control, indoor humidity control, outside air cooling control, CO₂ control, etc.</td>
</tr>
<tr>
<td>2</td>
<td>Chilled water and hot water (2-coil) system + Total heat exchanger + VAV</td>
<td>Supply air temperature control, return air humidity control, air volume variable control, outside air cooling control, CO₂ control, etc.</td>
</tr>
<tr>
<td>3</td>
<td>Chilled water and hot water (2-coil) system</td>
<td>Indoor temperature control, indoor humidity control, etc.</td>
</tr>
<tr>
<td>4</td>
<td>Chilled water and hot water (2-coil) system + Outside air damper</td>
<td>Indoor temperature control, indoor humidity control, outside air damper control, etc.</td>
</tr>
<tr>
<td>5</td>
<td>Chilled water and hot water (1-coil) system + Total heat exchanger</td>
<td>Indoor temperature control, indoor humidity control, outside air cooling control, CO₂ control, etc.</td>
</tr>
<tr>
<td>6</td>
<td>Chilled water and hot water (1-coil) system</td>
<td>Indoor temperature control, indoor humidity control, outside air cooling control, CO₂ control, etc.</td>
</tr>
<tr>
<td>7</td>
<td>Chilled water and hot water (2-coil) system + Outside air damper</td>
<td>Indoor temperature control, indoor humidity control, outside air damper control, etc.</td>
</tr>
</tbody>
</table>

(*3) When using a sample program, be sure to check the specifications, and perform check work, including debugging. Contact us for sample programs.

Feature 5 Debugging program simulators are available.

Debugging program simulators

The debugging of a developed program on the desk will reduce on-site work and person-hours. A simulator is available with four RTD output points, a digital/analog I/O simulator with 24 discrete I/O points and 8 analog I/O points, and a power start/stop simulator. Our special staff will support you. Please contact Customer Center for details.
The BA9x-VAV is a VAV-dedicated controller that varies the damper opening and changes the airflow volume, thus controlling the indoor temperature. The BA9x-VAV communicates with the AHU-dedicated open network DDC over the communications network and performs indoor temperature control in linking with the AHU. The BA9x-VAV is a compact size controller attached to the VAV in the ceiling.

1 Temperature Control

The VAV Controller calculates airflow volume demand to adjust room temperature toward a setpoint. The demand is then used for airflow volume control as explained below.

\[
\text{DEMAND} = \frac{\text{Proportional Control Output} + \text{Integral Control Output}}{100}\%
\]

- **Proportional Control**
 Manipulated value for proportional control is determined by room temperature as shown in the figure below.

- **Integral Control**
 Difference between setpoint and room temperature is calculated every second and accumulated. Manipulated value for integral control is determined by dividing the accumulated value by its integration time as shown in the figure below.

2 Airflow Volume Control

The VAV Controller calculates current airflow volume using a speed sensor signal and manipulates damper opening to minimize airflow volume difference from the demand. The damper opening is manipulated in five positions.

- **Damper Opening and Operating Time**
 The damper opening is controlled in proportion to a contact closure time provided by the VAV Controller for each of Open and Close directions. When the power supply is turned on, the Controller runs the damper from the full-open position to the full-closed position to measure its full span time and calculate opening change by time unit. The damper can be then set to a desired opening position in reference to the full-closed position by the contact closure.

Modbus
- Model: BA9M-VAV

Modbus
- Model: BA9M-VAVA
 The BA9M-VAVA is promised to be used in combination with a VAV unit that can perform air volume control. Use the BA9M-VAV in the case of a VAV unit that needs Controller-employed air volume control.

LONWORKS
- Model: BA9-VAV

Room Controller
- Model: BA-RC2

Room Controller
- Model: BA-RCW1L
 For max. 4 zones

Function Diagram

- Modbus, LONWORKS
The BA9x-FCU is an FCU-dedicated controller that adjusts the room temperature with the starting and stopping of the FCU fan, the high-, medium-, and low-speed control of the fan, and the opening control of the chilled and hot water valves. The BA9x-FCU communicates with the host SCADA unit over the communications network. The BA9x-FCU is a compact controller mounted on the FCU.

1 Airflow Volume Control

High, Medium, Low volume settings and Auto mode are available. High, Medium or Low is manually switched. In the Auto mode, the FCU adjusts airflow volume automatically in response to the deviation of measured room temperature from setpoint. "Fan OFF" mode, in which the airflow is turned off when the deviation is within a preset deadband, is also selectable during automatic control.

2 Valve Opening Control

The FCU Controller manipulates chilled/hot water valves according to the deviation of measured room temperature from setpoint. Either proportional or ON-OFF control strategy is selectable.

- Cooling Mode (proportional control)
 The chilled water valve opening is controlled in five steps as in the figure below. (*)

- Heating Mode (proportional control)
 The hot water valve opening is controlled in five steps as in the figure below. (**)

(*) Valve Opening and Operating Time
The valve opening is controlled in proportion to a contact closure time provided by the FCU Controller for each of Open and Close directions. When the power supply is turned on, the Controller runs the valve from the full-open position to the full-closed position to measure its full span time and calculate opening change by time unit. The valve can be then set to a desired opening position in reference to the full-closed position by the contact closure.
The Remote I/O R3 Series handles many I/O points and is convenient and suitable for air-conditioning control.

Multi-channel, Scalable Remote I/O R3 Series

The R3 Series is the most substantial remote I/O that responds to various types of networks and I/O modules.

Configuration

Each module handles many input or output points, thus making it possible to configure a high-density I/O system at a low cost. The user can combine only the necessary modules, thus making it possible to build a system economically without waste.

- **Size:** H 130 (5.12) × D 120 (4.72) mm (inch)
- Supports many types of network protocols.
- I/O modules in a wide variety are available.

This is a modular type remote I/O system built with a flexible selection of power supply modules, network modules and input and output modules mounted on the base.

<table>
<thead>
<tr>
<th>Power supply module</th>
<th>Continuous output current: 750 mA, single slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>2 slots - 16 slots</td>
</tr>
<tr>
<td>Base, free I/O address</td>
<td>4 slots - 16 slots</td>
</tr>
</tbody>
</table>

Easy and reliable snap-in mounting

Each I/O module and network module has a CPU and data is updated in serial communication with each other. Therefore, if dual redundant communication system is used, no momentary interruption or bumping of analog output will occur even at the time of switching the system. Exchanging I/O modules or network modules does not affect other modules. The user can replace them with the power kept turned on.

Removable terminal blocks

Each R3 Series terminal block is of detachable construction. This is convenient when checking or changing the specifications of your system.

- **Supports many types of network protocols**
 - Responds to 12 types of networks. (see below)

- **Economical I/O modules**
 - Each remote I/O module has many input or output points, thus ensuring high cost performance per point.

- **A wide variety of special function modules.**
 - A wide variety of special function modules are available, which include a multi-power monitor module for power calculations and a temperature controller module.

Types of communications networks

- **CC-Link**
- **IE Field**
- **DeviceNet**
- **BACnet**
- **EtherNet/IP**
- **Modbus/TCP**
- **Modbus**
- **MECHATROLINK**
- **LONWORKS**
- **TLink**
- **FL-net**
- **ProfiBus**

Hot-swappable modules

3 types of terminal blocks

- **Supports dual redundant network and two independent networks**
 - Improves the reliability of data communication.

- **Supports dual redundant power supply and two independent power sources**
 - Possible to build a redundancy system with dual power supply or two power sources at 100 V AC, 200 V AC, and 24 V DC.
Convenient I/O modules for BA are available, including a one-shot pulse module used to turn power on and off and a remote control relay module.

<table>
<thead>
<tr>
<th>Model</th>
<th>I/O</th>
<th>Application</th>
<th>Monitoring/ control</th>
<th>Measurement</th>
<th>Power</th>
<th>Totalized pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3-DA16</td>
<td>Discrete input, 16 ch.</td>
<td>Status monitoring, failure monitoring, and alarm monitoring</td>
<td>○</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-DC16</td>
<td>Discrete output, 16 ch.</td>
<td>Season switching, status display, and interlocking</td>
<td>○</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-DAC16</td>
<td>Discrete I/O (Di 8 ch., Do 8 ch.)</td>
<td>Power on/off control (one-shot pulse output)</td>
<td>○</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-RR8</td>
<td>Remote control relay control, 8 ch.</td>
<td>Lighting control (remote control relay control)</td>
<td>○</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-PA8</td>
<td>Totalized pulse input, 8 ch., 32 Bits</td>
<td>Pulse totalization (flow rate, power) (with preset function by host equipment)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>○</td>
</tr>
<tr>
<td>R3-SV8</td>
<td>DC voltage/DC current input, 8 ch.</td>
<td>Humidity, CO₂, pressure, flow rate, and others</td>
<td>—</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-YS4</td>
<td>DC voltage output, 8 ch.</td>
<td>Controller, inverter, and others</td>
<td>○</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-US4</td>
<td>Universal input, 4 ch.</td>
<td>Temperature measurements (Pt, Ni, Cu)</td>
<td>—</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-MS8</td>
<td>Potentiometer input, 8 ch.</td>
<td>Damper opening, and others</td>
<td>—</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-CT8A</td>
<td>AC current input, 8 ch.</td>
<td>Current measurement on power equipment</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>○</td>
</tr>
<tr>
<td>R3-WTU</td>
<td>AC power input(1 system, 2 systems)</td>
<td>Active power, reactive power, power factor, demand, and others</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>○</td>
</tr>
<tr>
<td>R3-DS4A</td>
<td>4-20 mA input w/exc. (switch provided), (4 systems)</td>
<td>Power supply to 2-wire transmitters</td>
<td>—</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-TS8</td>
<td>Thermocouple input, 8 ch.</td>
<td>Temperature measurement on pump bearings, and others</td>
<td>—</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3-MEX2</td>
<td>Actuator drive output (2 systems)</td>
<td>Direct driving of actuator (electric valve actuator and electric damper actuator)</td>
<td>○</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R3S-CM2A</td>
<td>Temperature and flow rate (2 inputs)</td>
<td>Energy management</td>
<td>—</td>
<td>○</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

It is quite troublesome to input analog values, such as temperature and humidity values, into a PLC through a ladder program because we need to take into consideration the scaling and timing of the input.

The Remote I/O R3 Series I/O module preprocesses the troublesome scaling and input timing, thus greatly alleviating the burden of DDC programming. It is advantageous that a wide variety of I/O modules are available including potentiometer input, thermocouple input, etc.
Guidance 1 Discrete I/O module

Model: R3-DAC16 Discrete I/O (Di 8 points, Do 8 points)
Model: R3-DAC16A Discrete I/O (Di 8 points, Do 8 points, internal power)

- Tension clamp terminal blocks are available as well. For details, see the specification sheet.

Why is the discrete I/O module convenient?

The discrete I/O module sends one-shot pulses to the CX relay and the TX relay on a power distribution board to start up and stop an air conditioner or pump.

Conventionally, logic programming was required, but the R3 Series I/O Module processes the required sequence internally, which has alleviated the burden of programming!

The discrete I/O module receives run/stop signals from the central monitoring system and outputs one-shot startup and stop pulses. This is convenient because it eliminates the need for writing a run/stop program.

Guidance 2 Remote control relay control module

Model: R3-RR8 Do 8 points

- Tension clamp terminal blocks are available as well. For details, see the specification sheet.

The remote-control relay is a relay unit that is used to turn lighting equipment on and off remotely. You can turn the equipment on and off with low-voltage control signals (e.g., 24 V AC control signals) without directly turning the power supply to the equipment on and off. The R3-RR8 can control remote control relays for eight circuits.
Guidance 3 Totalized pulse input module

Model: R3-PA8 Pi 8 points, 32 Bits

• Tension clamp terminal blocks are available as well. For details, see the specification sheet.

The totalized count values of electricity, gas, and water supply are used for billing and indispensable to building management. The law requires the replacement of billing meters at regular intervals, and it is necessary to match the reading value of each meter with the corresponding display value in the central monitoring system at the time of replacement. It is convenient to use the function that allows the central monitoring system to preset the integrated values.

Guidance 4 Valve positioner module

Model: R3-MEX2 for 2 systems, built in SSR

• For details, see the specification sheet.

We still want to use the existing valve actuator as it is.

The Valve Positioner Module can directly drive existing motorized valves.

Guidance 5 Calorie meter

Model: R3S-CM2A 2 inputs, Tension clamp terminal block

• For details, see the specification sheet.

This product is available for calorific value calculation for energy management and for the control of the number of heat sources.
Many more convenient and easy-to-use features are available.

I/O circuits are all isolated.

The PLC's analog input is non-isolated. Isolators are always required on the input side. The cost of a system will increase for that reason.

The input circuits of all Remote I/O R3 Series products are insulated from the field side. The cost will be reduced accordingly.

Dual redundancy for power supply and network is possible.

The heat source equipment of heat supply plants must not stop working. So, it needs to be absolutely reliable.

The R3 Series supports dual power supply and network lines, which will increase the reliability of the system dramatically.

The R3 Series is an open network system that is ideal for adding I/O points to existing systems.

We want to add I/O points to an existing PLC system, but we wonder if there is a good way to do this.

The R3 Series can be used as remote I/O for an existing PLC system. The cost performance will also be improved greatly.
The lineup of Remote I/O Series includes the R6, R7, R8, and R9 Series besides the R3 Series.

R6 Series - Ultra-Slim, Scalable Remote I/O

The R6 Series is an ultra-small combination remote I/O model that can make effective use of a small space as much as possible.

This is suitable for applications with relatively few I/O points where signal input and output coexist. Three types of terminals—Euro, screw, and tension clamp terminals—are available so that customers can choose the most suitable one.

What is more, a wide variety of network modules and I/O modules are available.

Compact Remote I/O

The R7 Series is a compact, all-in-one remote I/O model.

This economical palmtop remote I/O model of single block construction integrates a network, power supply, and I/O in one package. A wide variety of extension modules for contact I/O points are available. In the case of analog inputs, the R7 Series transmits 0% to 100% data in a resolution of 0 to 10000 of the full-scale range.

Slice Type, Scalable Remote I/O

The R8 Series is a remote I/O model created in response to customers’ requests.

This is a remote I/O model with no mounting base that can flexibly combine a necessary number of ultra-thin I/O modules. Modules with built-in interlocking functions are available. They turn all output signals OFF at once in response to contact input from a safety device, such as an emergency stop switch. We will welcome customers’ request to adopt different manufacturers’ terminal blocks and connectors. Feel free to consult us.

Multi-channel All-in-one Remote I/O

This compact remote I/O model for power calculations is designed with economic efficiency.

This is a power measurement remote I/O model that calculates various power quantities, such as active power, reactive power, power factors, and apparent power, and communicates data via open network. The model accepts a maximum of eight channels of current input from the same system. Therefore, the model is suitable for the power monitoring of multiple machines. By mounting an SD card, the date-linked logging of power quantities, such as current and power values, is possible.
Convenient for building multi-vendor systems

This Remote I/O model is compatible with BACnet as a de facto standard communication protocol for building automation.

BTL certification

This product has BTL certification under a certification test service conducted by the BACnet Testing Laboratory (BTL).

Direct I/O compatible with BACnet

BA8 Series

Discrete input & Relay output module, 4 points each (BACnet MS/TP)

Model: BA8BM-DAC8

Remote I/O compatible with BACnet

BA3 Series

BA Controller (BACnet MS/TP, BACnet/IP)

Model: BA3-CB10

Network Module (BACnet MS/TP)

Model: BA3-NBM1

Network Module (BACnet/IP)

Model: BA3-NBI1

Users can select an optimum type of I/O module from a wide variety of Remote I/O R3 Series according to the application.

Introduction of BACnet-compatible Products
Process Controller of Touch Panel Type

Full-spec New-generation Programmable Controller

- Provided with a fine, full-dot large color LCD. (4.3-inch TFT with 256 colors, 480 × 272 dots)
- Equipped with advanced control and computing functions to support a wide range of user applications.
- Excellent maintainability supported by various engineering functions.

Example: Reciprocating pressure control of chilled water control

The SC series controller can control two loops. In this example, a controller performs the pressure control of the chilled water supply and return headers. By writing a sequence program in the controller, complicated sequence control will be possible for starting and stopping pumps.

Temperature Controller and Temperature Control Module

A general-purpose type temperature controller incorporating an easy-to-see display

- By allocating contact input, the user can switch banks and operation modes.
- The TC10EM can control two loops. The remote setpoint (SP) function is available in the case of single-loop control.
- Manipulated value (MV), process value (PV), and alarm output can be allocated as control outputs.

Example: Room temperature and humidity control

A single TC10EM temperature controller can work in two-loop control of temperature control and humidity. Furthermore, it can communicate with the central monitoring system over Modbus.

For details, see the specification sheet.
Adopts a stepping motor.

With the adoption of a stepping motor, the MSP Series has achieved a long life and a resolution of 1/1000 of the full stroke. Furthermore, the MSP Series supports various types of open network protocols.

A compact and lightweight electric actuator for control valves.

The high-thrust, compact, and lightweight MSP Series can be connected to a control valve located in a narrow space or at an elevated position. The MSP Series is driven by linear motion in which the output stem moves directly up and down. Therefore, unlike conventional electric actuators, the MSP Series does not need a link mechanism to convert the rotating movement to linear motion. The MSP Series incorporates zero and span adjustments, which enables stroke and tightening position adjustments with a control valve at the time of setup, thus greatly reducing on-site adjustment time.

External view

- **Seal-spring**
 - Spring mechanism for both extending and retracting directions
 - Constant sealing pressure (MSP4 for single direction only)

- **Control Circuit**
 - Electronic limiter for full-open/closed positions for easy calibration
 - Overload protection functions

- **Stepping Motor**

- **Power cable**

- **Output Stem**

Model No.

- **MSP4**
 - Stroke 5-10 mm, 8-15 mm
 - Thrust 5 sec. / 150N

- **MSP5**
 - Stroke 5-10 mm, 10-20 mm
 - Thrust 5 sec. / 150N

- **MSP6**
 - Stroke 10-20 mm, 20-40 mm
 - Thrust 5 sec. / 600N

Operation Time (10 mm), Thrust

- MSP4: 5 sec. / 150N, 9 sec. / 300N, 18 sec. / 700N
- MSP5: 5 sec. / 150N, 9 sec. / 300N, 18 sec. / 700N
- MSP6: 5 sec. / 600N, 8 sec. / 1200N, 15 sec. / 2500N

For details, see the specification sheet.
1. Splits a single input signal into four isolated output signals.

The MFS2 is very often used for air-conditioning control systems.

Isolated Four Outputs

Split-Range Transmitter

Model: MFS2

Example: Inverters and a bypass valve in control of the supply pressure of a chilled water header.

The control output from a pressure controller is split into inverter control signals for three chilled water pumps and a single control signal for a header bypass valve. Three chilled water pumps and a header bypass valve are split and set in the sequence as shown below. The MFS2 makes it easy to realize an energy-saving system that supplies chilled water to match the load of the chilled water.

Example: Instrumentation in control of an air conditioner cooling with outside air

The MFS2 splits the control output of the temperature controller and transmits four isolated output signals individually to the hot water valve, chilled water valve, outside air and exhaust dampers, and return air damper. Furthermore, the MFS2 inputs into the temperature controller a contact signal to activate the function of cooling with outside air. The chilled water valve and hot water valve operate in the sequence for cooling and heating as shown below. When cooling with outside air is possible, the outdoor air damper, exhaust damper, and return air damper will operate in the sequence shown and perform outside air cooling.

• For details, see the specification sheet.

2. Splits a single input signal into two isolated output signals (non-isolated)

Chilled water valve and hot water valve control is possible with a single control output signal.

Split-Range Transmitter

Model: MFS

The MFS receives the output signal of the temperature controller and splits the signal into two and outputs them. The MFS is used for the V-shaped split operation of the chilled water valves and hot water valves of AHUs and the split operation of large-sized and small-sized flow valves.

• For details, see the specification sheet.
3 Existing electric instrumentation using 135 Ω input can be retrofitted.

4-20 mA DC is converted into a resistance value such as 135 Ω.

Wide Variety of Resistance Ranges

DC/Potentiometer Converter

Model: CVR1

- Upgrading of manual-to-remote setting for inverters
- Remote control of electric actuators accepting 135 Ω input
- Automation and remote setting of equipment controlled manually with potentiometers

<table>
<thead>
<tr>
<th>Resistance Values</th>
<th>100 Ω</th>
<th>500 Ω</th>
<th>5 kΩ</th>
<th>50 kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>135 Ω</td>
<td>1 kΩ</td>
<td>10 kΩ</td>
<td>100 kΩ</td>
<td></td>
</tr>
<tr>
<td>200 Ω</td>
<td>2 kΩ</td>
<td>20 kΩ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Old electric equipment using 135 Ω can be saved.

Existing System

- Manual setting (thermostat)

Updated System

- Central monitoring system

We want to control remotely while maintaining the existing electric actuator.

4 I/V Positioners dedicated to electric valves and dampers for air conditioners, driven with 24 V AC

Position control is possible with a direct/reverse turn motor.

Valve Positioner (for 24 V AC motor)

Model: KMP

The KMP receives a control signal of 4 to 20 mA DC from a controller and drives an electric valve or damper that provides a feedback signal of 135 Ω. The long life of the KMP is ensured with semiconductor switches for control signal output. Users can select also the options for the split operation or reverse operation when ordering.

Network-capable Valve Positioners

- Modbus, built-in SSR
 Model: MEXM

- LONWORKS, built-in SSR
 Model: MEXL

Existing motor-operated valves can be used as they are.

For details, see the specification sheet.
5 Isolators accepting a single input signal, and providing two isolated output signals.

Two isolated output signals are convenient for the inverter control of air supply and exhaust fans.

Plug-in Socket Mounted Signal Transmitter
Model: W2VS

Built-in excitation, Two isolated outputs
Pulse Isolator
Model: KWYPD

6 Function modules generally used for BA

Easy ratio/bias setting with the control buttons with a help of digital display behind the front cover.

Output Bias
Ratio/Bias Transmitter
Model: M2REB

Addition or selection for two signals are performed.

High/Low Selector
Model: M2SES

RTD transmitter programmable with a PC software tool

PC Programmable RTD Transmitter
Model: M2XR2

7 Noise filter for LONWORKS

Compatible to FTT-10A network.

LONWORKS Noise Filter
(FTT-10A)
Model: NF-LWA

The NF-LWA satisfies the specifications of insulation choke for FTT-10A network recommended by Echelon. Note: This unit is not applicable to LonWorks Link Power network.

8 Indoor switch for LONWORKS

LONWORKS Indoor Switch
Model: BA-RCL

The BA-RCL is an indoor switch for the LonWorks, which is used to perform the ON/OFF control of lighting.

* For details, see the specification sheet.