



【░●░》温度センサの選択と設置(2)

保護管

腐食や衝撃から温度センサを保護するため、保護 管が使用されます。保護管は前述した測定遅れの原 因になりますから、測定対象によって保護管を選定 する必要があります。保護管を取付ける壁や外界の 影響を受けないようにするため、金属の保護管では 管径の 15~20 倍、非金属の保護管では 10~15 倍 の長さを測定対象内に挿入することが望まれます。

管の中を流れる流体の温度を測定するときは、 図に示すように保護管を管の中央に置き、流れと 逆の方向に差し込むのが望ましい設置方法です。 常温以下の低温を測る場合には、保護管の結露に よって絶縁不良を起こし、誤差の原因になること があるので、湿気が入らない構造のものを選ぶ必 要があります。セラミック製など非金属製保護管 は一般に熱衝撃に弱いため、設置場所への取付け、 取外しの際には注意が必要です。

シース形センサ

シース形センサは熱容量が小さく、応答が早い という長所をもちますが、機械的強度が劣るとい う弱点をもっています。

シース形センサの最小許容曲げ半径はシース外径 の約5倍ですが、同一箇所で繰り返し曲げないよう にすること、またできるだけ温度勾配が小さいとこ ろで曲げる必要があります。シース測温抵抗体で は、先端部分に抵抗素子が内蔵されているため、先 端から 100 mm の間では曲げてはいけません。

その他の注意

1. 電気的ノイズ

センサの電気信号は mV 程度の微少な信号であり、 外部からの電気的ノイズの影響を受ける場合があり ます。熱電対による温度測定では、一般に熱電対の 先端が保護管に溶接された接地形が、ノイズにも強 く安定な測定に適しています。しかし、電気炉など で保護管が電位をもつ場合には、接地が電位をもつ ため、絶縁形の方がノイズの影響が少なくなります。

いずれにしても、できるだけノイズの影響を受 けにくい場所へのセンサの設置および配線が必要 です。さらに耐ノイズ性に優れた変換器、受信計器 を選ぶことが安定なプラント運転につながります。

2. 機械的振動と付着物

プラントが振動する場合、振動によるセンサの破 壊に注意する必要があります。とくに、プラントの 振動周波数が保護管を含むセンサの固有振動周波数 と一致すると、振動はセンサで拡大されて大きな力 となり、センサを破壊します。また振動による接続 部のゆるみが原因でガスや液体、湿気がセンサ内に 入ることに対する対策も必要です。絶縁の低下に よって電気的ノイズが受け易くなったり、また誤差 が発生する原因ともなります。

保護管の外側に付着した付着物は、温度センサと しての熱伝導を悪くし、誤差の原因になります。と くに見えない場所に設置されているセンサには注意 が必要です。

3. 信号の多目的使用

1個の温度センサに複数の受信器を接続することは、 望ましい方法ではありません。受信器間の入力回路の 電位差が相互に影響しあい、誤差が生じることがあり ます。またバーンアウト機能をもつ受信器の場合は、 熱電対に微小電流を流すため相互影響を生じます。

温度変換器を用い、変換器の出力信号を多目的に 使用することを推奨します。エム・システム技研は 絶縁2出力変換器を用意しています。

MS TODAY 1998年5月号 14