ISOLATION AMPLIFIER

(small size, input isolation, SIP type)

MODEL 20VS8-202Y

BEFORE USE

Thank you for choosing us. Before use, please check contents of the package you received as outlined below. If you have any problems or questions with the product, please contact our sales office or representatives.

■ PACKAGE INCLUDES:

Amplifier	(1	L)
-----------	----	----

■ MODEL NO.

Confirm Model No. marking on the product is exactly what you ordered.

■ INSTRUCTION MANUAL

This manual describes necessary points of caution when you use this product, including installation, connection and basic maintenance procedures.

POINTS OF CAUTION

■ POWER INPUT RATING & OPERATIONAL RANGE

Power Supply

Operational voltage range, power consumption: 15V DC rating: Rating ±5%, approx. 7.5mA (with no load)

■ ENVIRONMENT

- Indoor use.
- Do not install the unit where it is subjected to continuous vibration. Do not subject the unit to physical impact.
- Environmental temperature must be within -25 to +85°C (-13 to +185°F) with relative humidity within 30 to 90% RH in order to ensure adequate life span and operation.

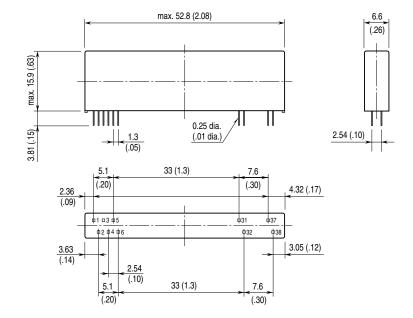
■ WIRING

- Do not install cables close to noise sources (relay drive cable, high frequency line, etc.).
- Do not bind these cables together with those in which noises are present. Do not install them in the same duct.

■ MOUNTING THE MODULE

It is recommended to mount the module on a printed wiring board having through-holes of Ø0.8 with land diameters of Ø1.6.

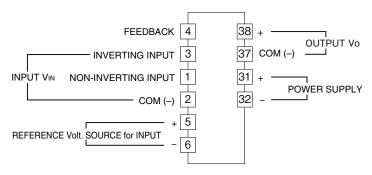
■ AND


- The unit is designed to function as soon as power is supplied, however, a warm up for 10 minutes is required for satisfying complete performance described in the data sheet.
- With voltage output, do not leave the output terminals shortcircuited for a long time. The unit is designed to endure it without breakdown, however, it may shorten appropriate life duration.

CHECKING

- 1) Terminal wiring: Check that wiring is correctly connected according to the connection diagram.
- 2) Power input voltage: Check voltage across the pins.
- 3) Input: Check that the input signal is within 0-100% of the full-scale.
- 4) Output: Check that the load resistance meets the described specifications.

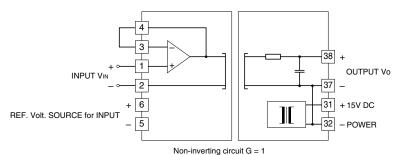
TERMINAL CONNECTIONS


■ EXTERNAL DIMENSIONS unit: mm (inch)

PIN ASSIGNMENTS

Non-inverting Input
Input COM (–)
Inverting Input
Feedback
Reference Voltage Source (-)
Reference Voltage Source (+)
Power Supply (+)
Power Supply (–)
Output COM (–)
Output (+)

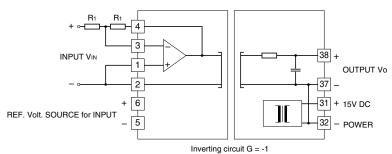
■ CONNECTION DIAGRAM


Note: The reference voltage source for input is common to the input COM (-)

APPLICATION EXAMPLES

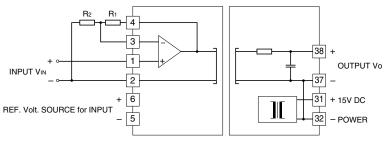
The primary amplifier in this unit is high accurate. Installing external resistors to the inverting input (pin 3) and the feedback (pin 4), this unit can be used as a non-inverting or inverting amplifier.

The series resistance of the amplifier, R_1 + R_2 must be between 10 k Ω and 1 M Ω .


■ Non-inverting amplifier circuit: Basic example of G = 1

The output is proportional to the input. The gain is 1.

E.g. 0 - 5V DC for 0 - 5V DC input.

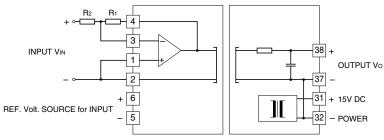

■ Inverting amplifier circuit: Basic example of G = -1 (output is inverted from the input)

The output is inverted from the input. The gain is -1.

E.g. 0V DC for 0V DC input and -5V DC for +5V DC input.

■ Non-inverting amplifier circuit: Example of G = 1 + R₁ / R₂

Non-inverting amplifier circuit $G = 1 + R_1 / R_2$


For a non-inverting amplification, the output is following.

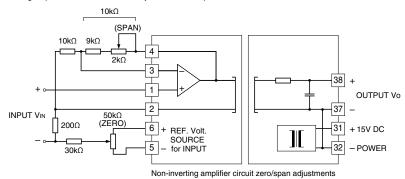
 $V_0 = (1 + R_1 / R_2) \times V_{\rm IN}$

When $R_1 = 10 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, then the output is following. The gain is 2.

 $V_0 = 2 \times V_{IN}$

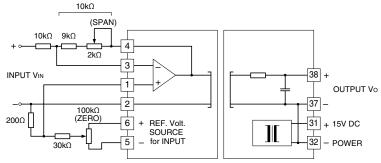
■ Inverting amplifier circuit: Example of G = -R₁ / R₂ (output is inverted from the input)

Inverting amplifier circuit G = -R1 / R2


For an inverting amplification, the output is following.

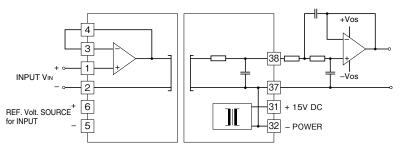
 $V_{\rm O} = \text{-}(R_{\rm 1} \, / \, R_{\rm 2}) \times V_{\rm IN}$

When R_1 = 20 k Ω , R_2 = 10 k Ω , then the output is following. The gain is -2.


 $V_0 = -(20 \text{ k}\Omega / 10 \text{ k}\Omega) \times V_{IN} = -2 \times V_{IN}$

■ Non-inverting amplifier circuit with external adjustments: Example of G = 2

For a non-inverting amplification with external adjustments, when the combined resistance of the span adjustment and 9 k Ω is 10 k Ω , the gain is (1 + 10 k Ω / R_2) × $V_{\rm IN}$. With the span adjustment (2 k Ω), the output is configurable. The zero is adjustable with a reference voltage source of ±16.5V DC and the attenuation of 200 Ω and 30 k Ω .


■ Inverting amplifier circuit with external adjustments: Example of G = -1 (output is inverted from the input)

Inverting amplifier circuit zero/span adjustments

For an inverting amplification with external adjustments, when the combined resistance of the span adjustment and 9 k Ω is 10 k Ω , the gain is -(10 k Ω / R_2) × $V_{\rm IN}.$ With the span adjustment (2 k Ω), the output is configurable. The zero is adjustable with a reference voltage source of ±16.5V DC and the attenuation of 200 Ω and 30 k Ω .

■ Non-inverting amplifier circuit: With noise filter

Circuit with low-pass filter installed on the output.

MAINTENANCE

Regular calibration procedure is explained below:

■ CALIBRATION

Warm up the unit for at least 10 minutes. Apply 0%, 25%, 50%, 75% and 100% input signal. Check that the output signal for the respective input signal remains within accuracy described in the data sheet.