REMOTE I/O R30 SERIES PC CONFIGURATOR SOFTWARE Model: R30CFG Ver. 1.17

Users Manual

1.	IN ⁻	TRODUCTION	.6
	1.1	GENERAL DESCRIPTION	. 6
	1.2	APPLICABLE DEVICES	. 6
	1.3	PC REQUIREMENTS	. 6
	1.4	DRIVER SOFTWARE	. 7
		1.4.1 INSTALLING DRIVER SOFTWARE	7
	1.5	INSTALLING & DELETING THE PROGRAM	. 7
2.	GE	ETTING STARTED	.8
	2.1	STARTING THE R30CFG	. 8
		2.1.1 SELECTING COM PORT	8
		2.1.2 SELECTING SLOTS	8
	2.2	MODIFYING PARAMETERS	. 9
		2.2.1 READING PARAMETERS FROM DEVICE (UPLOAD)	9
		2.2.2 MODIFICATION EXAMPLE	9
		2.2.3 WRITING NEW PARAMETERS (DOWNLOAD)	9
	2.3	SAVING & READING PARAMETERS IN A FILE	10
		2.3.1 READING PARAMETERS SAVED AS FILE	10
	0.4		10
	2.4	24.1 SETTING FINE ZEBO / GAIN AD ILISTMENTS	11 12
		2.4.2 SETTING SIMULATE INPUT/OUTPUT	12
	25	SWITCHING LANGUAGE	13
~			10
J.	PA		13
	5.1	3.1.1 VERSION NUMBER	13
		3.1.2 SETTING SIMULATE INPUT/OUTPUT	13
	3.2	R30NCIE1 - CC-Link IE FIELD NETWORK INTERFACE MODULE	13
		3.2.1 NETWORK NO	13
		3.2.2 STATION ID	13
		3.2.3 MAC ADDRESS	13
		3.2.4 LINK STATUS	14
		3.2.5 VERSION NUMBER	14
		3.2.6 SIMULATE INPUT/OUTPUT	14
	3.3	R30NE1 - Modbus/TCP INTERFACE MODULE	15
		3.3.1 TIME OUT	15
		3.3.2 IP ADDRESS, SUBNET MASK, DEFAULT GATEWAY	15
		3.3.3 PORT NUMBER 1 TO 4	15
		3.3.4 LINGER TIME	10
		3.3.6 FIRMWARE VERSION	10
		3.3.7 SIMULATE INPUT/OUTPUT	16
	31		17
	0.4	3.4.1 ANONYMOUS LOGIN	17
		3.4.2 USER LOGIN	17
		3.4.3 PERMISSION01 / 02	17
		3.4.4 LOG IN ID & PASSWORD	17
		3.4.5 IP ADDRESS, SUBNET MASK, DEFAULT GATEWAY, DNS SERVER	18

		3.4.6	DATA TYPE	. 18
		3.4.7	COMMUNICATION TIMEOUT MONITORING TIMER	. 18
		3.4.8	MAC ADDRESS	. 18
		3.4.9	SNTP TIME SYNCHRONIZATION	. 18
		3.4.10	TIME ZONE	. 19
		3.4.11	CONFIRMING VERSION NO.	. 19
		3.4.12	DATE / TIME SETTING	. 19
	3.5	R30N	CIT1 - CC-Link IE TSN Interface Module	. 20
		3.5.1	STATION ID	.20
		3.5.2	MAC ADDRESS	.20
		3.5.3	VERSION NUMBER	.20
		3.5.4	SIMULATE INPUT/OUTPUT	.20
Л	DΛ	RVW	ETER DETAILS OF 1/0 MODULES	21
Τ.	/ 1	B30X		21
	7.1	4 1 1	SIMULATE INPUT SETTING	21
	12	B30A		21
	4.2	421	SIMULATE OUTPUT SETTING	21
	13	B306		21
	4.5	4.3.1	SETTING UNUSED INPUT	21
		4.3.2	SETTING INPLIT BANGE	22
		4.3.3	SETTING FINE ZEBO / GAIN AD ILLISTMENTS, AND SCALED BANGE ZEBO / SPAN	22
		4.3.4		23
		4.3.5	SETTING CONVERSION BATE	23
		4.3.6		23
	11	0.0 D200		.20
	4.4	4 4 1	SETTING UNUSED INPUT	23
		442	SETTING INPLIT BANGE	23
		443	SETTING FINE ZEBO / GAIN AD JUSTMENTS, AND SCALED BANGE ZEBO / SPAN	24
		444	CONFIRMING VERSION NO	24
		445	SETTING AVERAGING NUMBER	24
		446	SETTING SIMULATE INPUT	25
	15	D2011		26
	4.5	4.5.1	SETTING UNUSED INPUT	20
		452	SETTING INPLIT TYPE	26
		453	SETTING TEMPERATURE UNIT	27
		454	SETTING ZEBO / FULL BASES FINE ZEBO / GAIN AD JUSTMENTS AND SCALED BANGE ZEBO / SPAN	27
		4 5 5	SETTING WIBING (BTD CONNECTION)	29
		4.5.6	SETTING BUBNOUT	29
		457	SETTING C.IC	29
		4.5.8	SETTING FIRST ORDER LAG FILTER	
		4.5.9	CONFIRMING VERSION NO	.30
		4 5 10	SETTING SIMULATE INPUT	
	10	-1.0.10 D20V		20
	4.0	161	SETTING UNUSED OUTPUT	. 30 30
		462	SETTING OUTPLIT BANGE	
		463	SETTING FINE ZERO / GAIN AD ILISTMENTS AND SCALED RANGE ZERO / SPAN	31

	4.6.4	SETTING OUTPUT AT OFFLINE OR POWER ON	.31
	4.6.5	CONFIRMING VERSION NO.	.32
	4.6.6	SETTING SIMULATE OUTPUT	.32
	4.6.7	SETTING OUTPUT AT OFFLINE	.32
4.7	R30Y	S4 - DC CURRENT OUTPUT MODULE, 4 POINTS	33
	4.7.1	SETTING UNUSED OUTPUT	.33
	4.7.2	SETTING FINE ZERO / GAIN ADJUSTMENTS AND SCALED RANGE ZERO / SPAN	.33
	4.7.3	SETTING OUTPUT AT OFFLINE OR POWER ON	.34
	4.7.4	CONFIRMING VERSION NO.	.34
	4.7.5	SETTING SIMULATE OUTPUT	.34
	4.7.6	SETTING OUTPUT AT OFFLINE	.34
4.8	R30T	S4 - THERMOCOUPLE INPUT MODULE, 4 points	35
	4.8.1	SETTING UNUSED INPUT	.35
	4.8.2	SETTING INPUT SENSOR TYPE	.35
	4.8.3	SETTING TEMPERATURE UNIT	.35
	4.8.4	SETTING ZERO / FULL BASES, FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN	.36
	4.8.5	SETTING BURNOUT	.37
	4.8.6	SETTING CJC	.37
	4.8.7	CONFIRMING VERSION NO	.37
	4.8.8	SETTING CONVERSION RATE	.38
	4.8.9	SETTING SIMULATE INPUT	.38
4.9	R30R	S4 - RTD INPUT MODULE, 4 points	38
	4.9.1	SETTING UNUSED INPUT	.38
	4.9.2	SETTING INPUT SENSOR TYPE	.38
	4.9.3	SETTING TEMPERATURE UNIT	.39
	4.9.4	SETTING ZERO / FULL BASES, FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN	.39
	4.9.5	SETTING BURNOUT	.40
	4.9.6	CONFIRMING VERSION NO.	.40
	4.9.7	SETTING CONVERSION RATE	.40
	4.9.8	SETTING SIMULATE INPUT	.40
4.10	0 R30N	IS4 - POTENTIOMETER INPUT MODULE, 4 points	41
	4.10.1	SETTING UNUSED INPUT	.41
	4.10.2	SETTING ZERO / FULL BASES AND SCALED RANGE ZERO / SPAN	.41
	4.10.3	CONFIRMING VERSION NO.	.42
	4.10.4	SETTING CONVERSION RATE	.42
	4.10.5	SETTING SIMULATE INPUT	.42
	4.10.6	MONITOR SCREEN AND FINE ADJUSTMENT	.42
4.1	R30C	T4E - AC CURRENT INPUT MODULE, 4 points	43
	4.11.1	SETTING UNUSED INPUT	.43
	4.11.2	SETTING INPUT SENSOR TYPE	.43
	4.11.3	FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN	.43
	4.11.4	SETTING Low-end CUTOUT	.44
	4.11.5	CONFIRMING VERSION NO.	.45
	4.11.6	SETTING CONVERSION RATE	.45
	4.11.7	DELAY AT POWER ON	.45

	4	. 11.8 SETTING SIMULATE INPUT	45
	4.12	R30PA2 - TOTALIZED PULSE INPUT MODULE, 2 points	46
	4	12.1 SETTING MAXIMUM COUNT VALUE OF TOTALIZED PULSE	46
	4	12.2 SETTING COUNT AT OVERFLOW	46
	4	.12.3 CONFIRMING VERSION NO.	46
	4	.12.4 COUNTING INPUT PULSE UP/DOWN EDGES	46
	4	12.5 DETECTING EDGE DIRECTION OF RESET PULSE	46
	4	12.6 EDGE DETECTION OF RESET PULSE	46
	4	.12.7 RESETTING/PRESETTING BY MASTER	47
	4	. 12.8 SETTING SIMULATE INPUT	47
	4	. 12.9 PRESETTING PULSE COUNT	47
	4.13	B30GCIE1 - CC-Link IE Field NETWORK INTERFACE MODULE	. 48
	4	.13.1 NETWORK NO	48
	4	13.2 STATION ID	48
	4	13.3 MAC ADDRESS	48
	4	13.4 LINK STATUS	48
	4		
	4		49
	4	13.7 MONITOR SCREEN AND SIMULATION DATA	49
			50
	4.14		50
	т 4	14.2 SETTING SIMULATE I/O	50
	-		50
	4 4 5 1		
	4.151	R30GOUAT - NETWORK INTERFACE MODULE FOR OPC-UA SERVER	51
	4		51
	4		51
	4		51
	4		51
	4	.15.5 IP ADDRESS, SUBNET MASK, DEFAULT GATEWAY, DNS SERVER	52
	4	. 15.6 DAIA TYPE	52
	4		52
	4	. 15.8 MAC ADDRESS	52
	4	.15.9 SNTP TIME SYNCHRONIZATION	52
	4	.15.10TIME ZONE	53
	4	. 15.11 CONFIRMING VERSION NO.	53
	4	.15.12SETTING SIMULATE INPUT/OUTPUT	53
	4	.15.13MONITOR SCREEN AND SIMULATION DATA	53
	4	.15.14 DATE / TIME SETTING	53
5.	BAS	SIC PARAMETERS OF TABLET RECORDER	.54
	5.1	TR30	54
6	BAS	SIC PARAMETERS OF WEB DATA LOGGER	.54
	6.1	DL30	
-			E 4
1.			.54
	/.1		54
			54
	7.		54
	7.2 \	VERSION HISTORY	55

1. INTRODUCTION

1.1 GENERAL DESCRIPTION

The R30CFG is used to program parameters for the Interface and I/O Modules of the R30 Series Remote I/O (referred hereunder as 'device'). The following major functions are available:

- Edit parameters
- Download parameters to the device, upload parameters from the device
- Save parameters as files, read parameters from files

1.2 APPLICABLE DEVICES

The R30CFG is applicable to the following products:

FUNCTION	MODEL
EtherCAT Interface Module	R30NECT1
CC-Link IE Field Interface Module	R30NCIE1
Modbus/TCP Interface Module	R30NE1
Network Module for OPC UA server	R30NOUA1
CC-Link IE TSN Interface Module	R30NCIT1
Tablet Recorder	TR30*1
Web Data Logger	DL30*2
Discrete Input Module, 16 points	R30XN16x
Discrete Output Module, 16 points	R30YN16x
DC Voltage/Current Input Module, 4 points (2 points)	R30SV4 (R30SV2)
High-speed DC Voltage/Current Input Module, 4 points	R30SVF4
Universal Input Module, 4 points (2 points)	R30US4 (R30US2)
DC Voltage Output Module, 4 points	R30YV4
DC Current Output Module, 4 points	R30YS4
Thermocouple Input Module, 4 points	R30TS4
RTD Input Module, 4 points	R30RS4
Potentiometer Input Module, 4 points	R30MS4
AC Current Input Module, 4 points	R30CT4E
Totalized Pulse Input Module, 2 points	R30PA2
CC-Link IE Filed Network Interface Module	R30GCIE1
EtherCAT Interface Module	R30GECT1
Network Interface Module for OPC UA server	R30GOUA1

*1. R30 I/O modules can be configured via TR30. Use TRGCFG to configure TR30.

*2. R30 I/O modules can be configured via DL30. Use DL30GCFG to configure TR30.

The latest version of the R30CFG is downloadable at our web site if you need higher version software.

1.3 PC REQUIREMENTS

The following PC performance is required for adequate operation of the R30CFG.

PC	IBM PC COMPATIBLE
OS	Windows 7 (SP1) (32-bit, 64-bit)
	Windows 8.1 (32-bit, 64-bit)
	Windows 10 (32-bit, 64-bit)
	Note 1: Windows RT is not included.
	Note 2: Not assuring operations in all environments.
CPU	Must meet the relevant Windows' requirements.
Memory	Must meet the relevant Windows' requirements.
Communication port	COM port (COM1 through COM16)

For connecting a device to a PC, use a commercially available USB cable (Type A Mini B).

1.4 DRIVER SOFTWARE

An FTDI's chip is used for the R30 Interface Module, and a dedicated driver software is required to be installed on a PC where the R30CFG is installed in order to connect the R30CFG to each device. When the driver software is installed on the PC, it will add a new serial port. Select this port as COM.

1.4.1 INSTALLING DRIVER SOFTWARE

- With a PC connecting to the Internet, the R30 USB Driver is automatically installed with the function of Windows Update in connecting to the R30 Interface Module.
- The R30 USB Driver is downloadable at our web site.

1.5 INSTALLING & DELETING THE PROGRAM

INSTALL

The program is provided as compressed archive. Decompress the archive and execute 'setup.exe' to start up the R30CFG installer program. Follow instructions on the Windows. Log on as administrator to start installation.

DELETE

Open Uninstall a program, or Uninstall or change a program. Select the R30CFG from the program list and click on Remove or Uninstall button (Windows 7 and 8.1).

Find and double-click R30CFG from Apps and Features, and then follow the instruction on the screen (Windows 10).

2. GETTING STARTED

2.1 STARTING THE R30CFG

Open the R30CFG program on the Windows PC. The following window appears on the screen.

	R30CFG Version 0.5.17	_ 🗆 🗙	
COMpart USB Serial Part (COM4)	beolot v	Download Monitor	
Comport USB Serial Port (COM4)		Download	
File Menu	Open File	Save File	COM port selection
Filename : No File	opennie	Saverne	
All On/Off	R30NECT1 - EtherCAT Interface Mod	ule	
Comm R30NECT1 (EtherCAT)	R30NECT1		
✓ IO[01]	Version number		
✓ IO[02]	Version number	-	
✓ IO[03]			Module Selection Button
✓ IO[04]	-11		Shows selection of modules
✓ IO[05]	-11		to mount on the slot selecte
✓ IO[06]	-11		in the Slot Information
✓ IO[07]			
✓ IO[08]			
✓ IO[09]			
✓ IO[10]			
✓ IO[11]			
✓ IO[12]			
✓ IO[13]			
✓ IO[14]			
✓ IO[15]			
✓ IO[16]			
↑	↑		
			7
Slot Information	Module Information		
Shows configuration of Interfa	ce Shows information abo	ut the device selected	
and I/O Modules	in the Slot Information t	to set its narameters	
		io ser ils parameters.	

2.1.1 SELECTING COM PORT

Select a COM port added in installing the R30 USB Driver adequately. The added COM port number depends on the PC.

2.1.2 SELECTING SLOTS

- 1) [Upload] and [Download] functions are applicable to the slots with checkmarks only.
- 2) [Monitor], [Open File] and [Save File] functions are applicable to all slots, regardless of the checkmarks.

2.2 MODIFYING PARAMETERS

Whenever you need to modify parameters stored in a device, first read (upload) the present parameters from the device, modify whatever parameters you need, and then write (download) the new parameters to the device.

2.2.1 READING PARAMETERS FROM DEVICE (UPLOAD)

- 1) Choose the COM port number to which the device is connected.
- 2) Click on [Upload] button at the top of the window.
 - Then the program starts to communicate with the device to read the present parameters. If an error message appears, confirm the hardware connection and the setting again before retrying.
- 3) The device's present parameters are uploaded and shown on the screen.

NOTE

The parameters of the slots without the checkmarks are not uploaded.

2.2.2 MODIFICATION EXAMPLE

The initial view is composed of the R30 module configuration to the left and the parameters of the selected module to the right.

The example below shows the R30NECT1 Interface Module, Discrete Input Module (slot 1) and DC Voltage/Current Input Module (slot 2).

Ele Menu		Download Monito	or	
Filename : No File	Open Fil	e Save File Langua	age	
All On/Off	R30SV4S - DC Voltage Input	Module		
Comm R30NECT1 (EtherCAT)	Input 1		- ^	
IO[01] R30XN16S (DI16)	Unused	CH enable		
C[02] R305V45 (AI4)	Input range	-10 to +10 V DC		
	Fine zero adjustment	0.00 (%)		
10[05]	Fine gain adjustment	1.0000		
✓] IO[06]	Scaled range Zero	0		
✓ IO[07]	Scaled range Span	10000		
✓ IO[08]	Input 2		1. Choose a devic	;e.
✓ IO[09]	Upused	CH enable		
✓ IO[10]	Input range	-10 to +10 V DC	2. Modify the par	amet
✓ IO[11]	Fine zero adjustment	0.00 (%)		
✓ IO[12]	Fine gain adjustment	1.0000		
	Scaled range Zero	0		
	Scaled range Span	10000		
✓ IO[16]	Input 3			
	Upused	CH enable		
	Input range	-10 to ±10 V DC		
	Fine zero adjustment	0.00 (%)		
	Fine gain adjustment	1.0000		
	Scaled range Zero	0		
	Scaled range Span	10000		
			~	

Parameters available to each type of module are explained in the later sections.

2.2.3 WRITING NEW PARAMETERS (DOWNLOAD)

- 1) Click on [Download] button at the top of the window.
- 2) When the indicator showing progress of the download reaches the right end without showing any error message, the new parameters are correctly updated, downloaded to the device, and immediately valid.

2.3 SAVING & READING PARAMETERS IN A FILE

Parameters edited on the screen can be saved as a file, and read out on the screen from the file. By combining [Upload] / [Download] functions with [Save File] / [Open File], a backup file of those presently used in the device can be created.

2.3.1 READING PARAMETERS SAVED AS FILE

Clicking on [Open File] button calls up the Windowsstandard Open dialog box, depending on the PC's operating system on which the program is running.

NOTE

The dialog box is displayed in the language of the OS.

Select a parameter file and click on [Open] button to show a stored parameter setting.

			Open			×
Look in:	鷆 settings		~	G 🌶 🖻 🛄 -		
œ.	Name	*		Date modified	Туре	Size
2	🗹 🔼 settings1.	:fg		7/14/2014 5:29 PM	CFG File	
Recent places	settings2.	fg		7/14/2014 5:29 PM	CFG File	
Desktop						
Libraries						
鰔 This PC						
	<					>
Network	File name:	settings1.cfg			~	Open
	Files of type:	Configuration Files (* off	s)		~	Cancel
This PC	≪ File <u>n</u> ame: Files of <u>typ</u> e:	settings1 ofg Donfguration Files (* ofg	s)		v	<u>O</u> pen Cancel

2.3.2 SAVING PARAMETERS IN A FILE

Clicking on [Save File] button calls up the Windowsstandard Save dialog box, depending on the PC's operating system on which the program is running.

NOTE

The dialog box is displayed in the language of the OS.

Enter a desired file name to File Name field and click on [Save] button to store a parameter setting.

		Save As			×
Save in:	鷆 settings	~	G 🌶 📂 🖽 -		
œ.	Name	<u>^</u>	Date modified	Туре	Size
Recent places	settings1. settings2.	cfg cfg	7/14/2014 5:29 PM 7/14/2014 5:29 PM	CFG File CFG File	
Desktop					
Libraries					
i 🍋 This PC					
	<				>
INELWORK	File <u>n</u> ame:	settings3		~	Save
	Save as type:	Configuration Files (*.ofg)		~	Cancel

2.4 MONITORING I/O STATUS

The Monitoring function is used to show I/O status of each device connected to the PC on the window, conduct fine adjustments, and set simulate I/O.

Click on [Monitor] button. When the communication is established, the following window appears on the screen. (The window shows an example where the R30SV4 and the R30YN16A are mounted to the base.)

nitor	
Ch 2 Ch 3 5025 5023	Ch 4 5275
3 4 5 6 7 8 9 10 11 12	13 14 15 16
Simulate Data	
^	
Ch 1 Ch 2 Ch	3 Ch 4
5060 5025 502	.5 .5275
SET	
• •	dose
	/

The following table explains the window above.

ITEMS	DESCRIPTION
(1) I/O	Shows the types of modules mounted to the base, followed by each I/O status with scaled value. Click on an I/O module to show 2) the fine zero/gain adjustments and 3) the simulate I/O.
(2) Fine adjustment	Conduct the fine zero/gain adjustments for the analog I/O. Also enable or disable the simulate I/O. The setting is immediately valid. When temperature channels of R30US2/US4 (T/C or RTD input), R30TS4 or R30RS4 are selected, the setting of these parameters are not available if the same value is set to the zero base and full base. This area is blank for the I/O modules without the fine adjustment function.* ¹ For R30PA2, it is required to set the preset value in this area.
(3) Simulate I/O	Set simulate I/O value. Click on [SET] button and the setting is immediately valid. Set the scaled value. (This area is blank for the I/O modules without the simulate I/O function.) For simulated I/O, input available range is -32768 to 32767. When an out-of-range value is entered, it is changed to -32768 or 32767. (For R30CT4E, refer to 4.11.8)

*1. Refer to 4.10.2 for R30MS4.

2.4.1 SETTING FINE ZERO / GAIN ADJUSTMENTS

Click on [Fine zero adjustment] or [Fine gain adjustment] to display buttons.

Each time you click on the left or right arrow of buttons, the fine adjustment value will be incremented or decremented (by 0.01 for the fine zero adjustment, and by 0.0001 for the gain).

Adjust Parameter				
Input 3				^
Fine zero adjustment	0.00 (%)			
Fine gain adjustment	1.0000			
Input 4				
Fine zero adjustment	2.38 (%)	4	۲]
Fine gain adjustment	1.0000			
common			-	
simulate input	normal input			¥

Double-click on [Fine zero adjustment] or [Fine gain adjustment] to enter the value.

^
~

2.4.2 SETTING SIMULATE INPUT/OUTPUT

Click on [Simulate input] ([Simulate output]) to display buttons.

Click on the right arrow to select the simulate input (simulate output) or the left arrow to select the normal input (normal output).

	^
0.00 (%)	
1.0000	
2.38 (%)	
1.0000	
normal input 🛛 🖪	+ v
	0.00 (%) 1.0000 2.38 (%) 1.0000 normal input

Double-click on [Simulate input] ([Simulate output]) and select the simulate input (simulate output) or normal input (normal output) from the drop-down menu.

Adjust Parameter			
Input 3			^
Fine zero adjustment	0.00 (%)		
Fine gain adjustment	1.0000		
Input 4			
Fine zero adjustment	2.38 (%)		
Fine gain adjustment	1.0000		
common			
simulate input	normal input	~	~
	normal input simulate input		

NOTE

Each time the fine zero/gain adjustment or the simulate I/O is set on the Monitor screen, the program communicates with the device to write the settings to it.

After closing the Monitor screen, the initial view still shows the previous settings.

To reflect the new settings on the screen, click on [Upload] button.

* The simulate I/O setting returns to the normal input (normal output) mode in starting up the device.

2.5 SWITCHING LANGUAGE

Clicking on [Language] button opens the Language dialog box. Choose one of the available languages. Note that the PC's operating system on which the program is running must be compatible with the selected language in order to show all characters correctly on the window.

	Langua	ge	X
Language	English	~	ОК
			Cancel
			Cancer

3. PARAMETER DETAILS OF INTERFACE MODULE

3.1 R30NECT1 - EtherCAT INTERFACE MODULE

The R30NECT1 does not have setting items, only displaying.

3.1.1 VERSION NUMBER

Version number of the firmware is displayed. This is not editable. When not uploaded, "-" is displayed.

R30NECT1	
Version number	1.01.04
simulate input/output	impossible

3.1.2 SETTING SIMULATE INPUT/OUTPUT

Displays possible/impossible of the simulation input/ output for R30XN16Sx, R30YN16Sx.

This is not editable.

Simulation input/output is possible when the the version of the interface module is 3.00 or later. For the analog I/O module supporting simulation I/O, Simulation I/O is available regardless of the indication.

R30NECT1	
Version number	1.01.04
simulate input/output	impossible

3.2 R30NCIE1 - CC-Link IE FIELD NETWORK INTERFACE MODULE

3.2.1 NETWORK NO

Set the network No. The range is 1 to 239, initial value is 1.

CC-Link IE Field	
NetWork No.	1
Station ID	12
MAC address	00-10-9C-00-FF-FE
Link Status	DISCONNECT

3.2.2 STATION ID

Station ID set in the R30NCIE1 is displayed. It is not available to change. When not uploaded, "-" is displayed.

CC-Link IE Field	
NetWork No.	1
Station ID	12
MAC address	00-10-9C-00-FF-FE
Link Status	DISCONNECT

3.2.3 MAC ADDRESS

MAC address of the R30NCIE1 is displayed. It is not available to change. When not uploaded, "-" is displayed.

CC-Link IE Field	
NetWork No.	1
Station ID	12
MAC address	00-10-9C-00-FF-FE
Link Status	DISCONNECT

3.2.4 LINK STATUS

Data link status at upload is displayed. It is not available to change.

Upload when display needs update.

- When not uploaded, "-" is displayed. • CYCLIC: Cyclic communication status
- TOKEN-PASS: Token-pass status
- DISCONNECT: When communication is not established.

3.2.5 VERSION NUMBER

Version number of the firmware is displayed. This is not editable. When not uploaded, "--" is displayed.

CC-Link IE Field	
NetWork No.	1
Station ID	12
MAC address	00-10-9C-00-FF-FE
Link Status	DISCONNECT

R30NCIE1	
Version number	1.01.01
simulate input/output	impossible

3.2.6 SIMULATE INPUT/OUTPUT

Displays the availability of simulate input/output in R30XN16Sx and R30YN16Sx.

This is not editable.

This is available with the network module version 3.00 or later.

Analog I/O modules that support simulate input/output can perform simulate input/output regardless of the display.

R30NCIE1	
Version number	1.01.01
simulate input/output	impossible

IMPORTANT

Be sure to reboot R30NE1 when its settings have changed. The new settings are effective only after turning off and on the power supply to R30NE1.

3.3.1 TIME OUT

Set the communication timeout period.

When there is no communication within this time period, RUN LED turns off, RUN contact turns off, and each output module which is connected enters the state of 'output at the loss of communication'.

Setting range: 0.2 to 3200.0 sec. Factory default: 3.0 sec.

Ethernet (Modbus/TCP)	
Time out	3.0
IP address	192.168.0.1
Subnet mask	255.255.255.0
Default gateway	192.168.0.100
Port 1	502
Port 2	502
Port 3	502
Port 4	502
Linger time	180.0 (sec)
MAC address	00-10-9C-00-FF-FE

3.3.2 IP ADDRESS, SUBNET MASK, DEFAULT GATEWAY

Setting range: 0 to 255 Factory default: IP address 192.168.0.1 Subnet mask 255.255.255.0 Default gateway 192.168.0.100

Ethernet (Modbus/TCP)	
Time out	3.0 (sec)
IP address	192.168.0.250
Subnet mask	255.255.255.0
Default gateway	192.168.0.1
Port 1	502
Port 2	502
Port 3	502
Port 4	502
Linger time	180.0 (sec)
MAC address	00-10-9C-00-FF-FE

3.3.3 PORT NUMBER 1 TO 4

Set the Port Number. It is normally set to 502.

Setting range: 1 to 32000 Factory default: 502

Ethernet (Modbus/TCP)	
Time out	3.0 (sec)
IP address	192.168.0.250
Subnet mask	255.255.255.0
Default gateway	192.168.0.1
Port 1	502
Port 2	502
Port 3	502
Port 4	502
Linger time	180.0 (sec)
MAC address	00-10-9C-00-FF-FE

3.3.4 LINGER TIME

Linger time is set for monitoring no communication time.

When there is no communication within the preset time period, communication is disconnected.

Setting range: 3.0 to 3200.0 sec. Factory default: 180.0 sec.

Ethernet (Modbus/TCP)	
Time out	3.0 (sec)
IP address	192.168.0.250
Subnet mask	255.255.255.0
Default gateway	192.168.0.1
Port 1	502
Port 2	502
Port 3	502
Port 4	502
Linger time	180.0
MAC address	00-10-9C-00-FF-FE

3.3.5 MAC ADDRESS

MAC address of R30NE1 is displayed. The MAC address is not editable.

'-' is displayed when it is yet to be uploaded.

Ethernet (Modbus/TCP)	
Time out	3.0 (sec)
IP address	192.168.0.250
Subnet mask	255.255.255.0
Default gateway	192.168.0.1
Port 1	502
Port 2	502
Port 3	502
Port 4	502
Linger time	180.0 (sec)
MAC address	00-10-9C-00-FF-FE

3.3.6 FIRMWARE VERSION

The firmware version of R30NE1 is displayed. This is not editable.

'-' is displayed when it is yet to be uploaded.

R30NE1	
Version number	1.01.04
simulate input/output	impossible

3.3.7 SIMULATE INPUT/OUTPUT

Displays the availability of simulate input/output in R30XN16Sx and R30YN16Sx.

This is not editable.

This is available with the network module version 3.00 or later.

Analog I/O modules that support simulate input/output can perform simulate input/output regardless of the display.

R30NE1	
Version number	1.01.04
simulate input/output	impossible

3.4 R30NOUA1 - NETWORK MODULE FOR OPC-UA DA SERVER

3.4.1 ANONYMOUS LOGIN

Set whether or not to allow anonymous login (No user authentication).

Log in	
Anonymous Log in	No Log in
User Log in	No Log in
Permission01	Read only Read/Write
Log in ID	AdminA
Password	admin123
Permission02	Read only
Log in ID	
Password	

To allow anonymous login, select the data access level between 'Read only' and 'R/W'.

3.4.2 USER LOGIN

Set whether or not to allow user login (User authentication by username and password).

When user login is allowed, up to 2 sets of username and password can be set.

Log in	
Anonymous Log in	Read only
User Log in	non-permission 🔹
Permission01	non-permission
Log in ID	Dermission
Password	admin 123
Permission02	Read only
Log in ID	
Password	

3.4.3 PERMISSION01 / 02

Set the data access level for each Log In ID.

Log in	
Anonymous Log in	Read only
User Log in	non-permission
Permission01	Read only 👻
Log in ID	Read only
Password	Read/Write
Permission02	Read only
Log in ID	
Password	

3.4.4 LOG IN ID & PASSWORD

Set User name and Password for each Log In ID.

Use alphanumerical characters (upper & lower cases) only.

Log In ID: If the parameter is left blank, the password will be initialized and user login becomes invalid.

Password: If the parameter is left blank, user login becomes invalid.

Log in	
Anonymous Log in	Read only
User Log in	non-permission
Permission01	Read only
Log in ID	AdminA
Password	admin 123
Permission02	Read only
Log in ID	
Password	

3.4.5 IP ADDRESS, SUBNET MASK, DEFAULT GATEWAY, DNS SERVER

Setting range: 0 to 255

Setting range: 0 to	200			
		1	IP address	192.168.0.1
Default values		5	Subnet mask	255.255.255.0
IP address	: 192.168.0.1	[Default gateway	192.168.0.100
Subnet mask	: 255.255.255.0	[DNS Server01	192.168.13.1
Default gateway	: 192.168.0.100	[DNS Server02	192.168.13.1
DNS server	: 192.168.13.1		card01UA data type	not define
		c	card02 UA data type	not define
			card03 UA data type	not define
		0	card04 UA data type	not define

Com. setting

card05 UA data type

Com. setting

IP address

Subnet mask

Default gateway

DNS Server01

DNS Server02

card01UA data type

card02 UA data type

card03 UA data type

card04 UA data type

card05 UA data type

card06 UA data type

3.4.6 DATA TYPE

Set the data types for I/O modules mounted on the respective slots of the R30 installation base.

Default setting: 'not define'

* When the setting is 'not define', the data type is automatically set depending on the type of I/O module. Discrete module: 'boolean'

Analog module: 'int16'

* For example, when the R30PA2 module is used, set as 'uint32' so that data is handled in 32 bits (2-word) and will not be separated.

3.4.7 COMMUNICATION TIMEOUT MONITORING TIMER

Set the timer value for communication timeout. When there is no access from an OPC-UA client before the timeout period elapses, a timeout error occurs.

Setting range: 0 to 32757 (0 to 3275.7 seconds) Set to 0 for no monitoring. Default setting: 300 (30 seconds)

3.4.8 MAC ADDRESS

MAC address of the R30NOUA1 is indicated, which is not editable.

'-' is displayed when the parameters are yet to be uploaded from the device.

3.4.9 SNTP TIME SYNCHRONIZATION

Set whether or not to allow time synchronization with the SNTP server.

When set to 'SNTP enable', time synchronization is performed at power-on, 0:00, 06:00, 12:00, and 18:00.

Default setting: 'SNTP disable'

Date/Time setting	
SNTP	SNTP disable 🔻
SNTP Server URL	SNTP disable
Time zone	SNTP enable

* When set to 'SNTP enable', be sure to set 'DNS Server', 'SNTP Server URL', and 'Time zone'.

card 16 UA data type	not define
Communication time out 100ms.	300
MACaddress	00-10-9C-47-02-8C

not define

192, 168, 0, 1

255.255.255.0

192.168.0.100

192.168.13.1

192.168.13.1

boolean

not define

uint16

uint32

int32

uint64

int16

card 16 UA data type	not define
Communication time out 100ms.	300
MACaddress	00-10-9C-47-02-8C

3.4.10 TIME ZONE

Set the UTC time zone.

Setting range: -12 to 14 Default setting: 9 (Japan time)

3.4.11 CONFIRMING VERSION NO.

The firmware version of the R30NOUA1 is indicated, which is not editable.

'-' is displayed when the parameters are yet to be uploaded from the device.

3.4.12 DATE / TIME SETTING	3
----------------------------	---

Date and time can be set on the Monitor screen.

Edit 'yyyy/mm/dd hh:mm:ss' and press "Enter" to validate the new setting.

In order to minimize time until the set date and time is reflected, it is highly recommended to perform data/time setting with no I/O module but the R30NOUA1 mounted on the base.

Setting range

Year	: 2001 to 2099
Month	: 1 to 12
Date	: 1 to 31
Hour	: 0 to 23
Min.	: 0 to 59
Sec.	: 0 to 59

Default value : 2013/01/01 00:00:00

Do NOT enter a date which does not exist (e.g., February 31). If such a date is entered, the value will not be reflected and the setting will remain unchanged.

 Date/Time setting

 SNTP
 SNTP disable

 SNTP Server URL
 ntp.nict.jp

 Time zone
 9

R30NOUA1 Version number 1.01.17

Adjust Parameter Date/Time setting Year/Month/Day Hour:Min.:Sec. 2019/09/25 10:40:59

3.5 R30NCIT1 - CC-Link IE TSN Interface Module

3.5.1 STATION ID

Station ID set in the R30NCIT1 is displayed. It is not available to change. When not uploaded, "-" is displayed.

CC-Link IE TSN	
Station ID	0001
MAC address	00-10-9C-00-FF-FE

3.5.2 MAC ADDRESS

MAC address of the R30NCIT1 is displayed. It is not available to change. When not uploaded, "-" is displayed.

CC-Link IE TSN	
Station ID	0001
MAC address	00-10-9C-00-FF-FE

3.5.3 VERSION NUMBER

Version number of the firmware is displayed. This is not editable. When not uploaded, "-" is displayed.

R30NCIT1	
Version number	1.02.08
simulate input/output	impossible

3.5.4 SIMULATE INPUT/OUTPUT

Displays the availability of simulate input/output in R30XN16Sx and R30YN16Sx.

This is not editable.

This is available with the network module version 3.00 or later.

Analog I/O modules that support simulate input/output can perform simulate input/output regardless of the display.

R30NCIT1 -

Version number	1.02.08
simulate input/output	impossible

4. PARAMETER DETAILS OF I/O MODULES

4.1 R30XN16x - DISCRETE INPUT MODULE, 16 POINTS

When the version of the network module is 3.00 or higher, the simulate input setting can be configurable. When the version is 2.xx or earlier or DL30, the R30XN16x does not have any setting items.

4.1.1 SIMULATE INPUT SETTING

Switching normal input or simulate input. Also configurable in fine adjustment on monitor screen. Set the simulate input value on monitor screen.

common	
simulate input	normal input
	normal input
	simulate input

4.2 R30YN16x - DISCRETE OUTPUT MODULE, 16 POINTS

When the version of the R30YN16x is 3.00 or higher, the simulate input setting can be configurable. When the version is 2.xx or earlier or DL30, the R30YN16x does not have any setting items.

4.2.1 SIMULATE OUTPUT SETTING

Switching normal output or simulate output. Also configurable in fine adjustment on monitor screen.

Set the simulate output value on monitor screen.

common	
simulate output	normal output 🗸 🗸
	normal output
	simulate output

*How to Perform Simulate Input/Output

Adjust Parameter		Simulate Data
common		
simulate output	simulate output	• 01 08 09 16 • • • • • • 17 24 25 32
		SET

Select the I/O module on the monitor screen, and select the simulate data in the "adjust parameter". Check the channel to output (input) the simulate data, and click SET button to activate the simulate data. In case of simulate input, the discrete input status indicator LEDs of R30XN16x will not turn on.

4.3 R30SV4 (R30SV2) - DC VOLTAGE/CURRENT INPUT MODULE, 4 POINTS (2 POINTS) The number of inputs for R30SV2 is 2 points.

4.3.1 SETTING UNUSED INPUT

Enable or disable each input. Disable the unused inputs.

Input 1		
Unused	CH enable	~
Input range	CH enable	
Fine zero adjustment	CH disable	
Fine gain adjustment	1.0000	
Scaled range Zero	0	
Scaled range Span	10000	

4.3.2 SETTING INPUT RANGE

Choose the input range for the enabled inputs.

Input 1		
Unused	CH enable	
Input range	-10 to +10 V DC	~
Fine zero adjustment	-10 to +10 V DC	
Fine gain adjustment	-5 to +5 V DC	
Scaled range Zero	0 to 10 V DC	
Scaled range Span	0 to 5 V DC	
Input 2	0 to 1 V DC	
Unused	-0.5 - +0.5 V DC -20 - +20 mA DC	
Input range	4 - 20 mA DC	
Fine zero adjustment	0 - 20 mA DC	

4.3.3 SETTING FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure below shows an example for setting the scaled range Span.

Input 1	
Unused	CH enable
Input range	-10 to +10 V DC
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000

PARAMETER	DESCRIPTION	AVAILABLE RANGE
Fine zero adjustment	Zero (bias) adjustment value	-320.00 to +320.00
Fine gain adjustment	Gain (span) adjustment value	-3.2000 to +3.2000
Scaled range Zero	Scaled value 0%	-32000 to +32000
Scaled range Span	Scaled value 100%	-32000 to +32000

NOTE

Calculation is carried out in the order of the fine gain, fine zero, and scaled range Zero/Span.

• Calculation example of fine zero/gain adjustments

Used for fine adjustment such as calibration. Fine zero adjustment = 100.00 (%), fine gain adjustment = 2.0000 With the raw value 50.00%,

Fine zero adj.

50.00 (%) × 2.0000 +100.00 (%) = 200.00 (%)

Calculated input value

Calculation example of scaled range Zero / Span

Fine gain adj.

Scaled range Zero = -10000, scaled range Span = 10000With the measured value 50.00% (5000) after calculating the fine adjustments with the scaled range Zero 0 and Span 10000,

Scaled range Span 50.00 (%) Scaled range Zero $(10000 - (-10000)) / 10000 \times 5000 + (-10000) = 0 (0.00\%)$ (Scaled range Span - Scaled range Zero) Calculated scaled value in measuring 50.00% Scaled range Zero

4.3.4 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable. "–" is shown when not uploaded.

common	
Version number	1.01.05
Conversion rate	80ms
simulate input	simulate input

4.3.5 SETTING CONVERSION RATE

Choose one of the input signal conversion rates among 10, 20, 40 and 80 milliseconds.

The conversion accuracy depends on the rate. Refer to the data sheet of R30SV4 (R30SV2) for the detailed information.

Setting per input is not available. Set the rate for all inputs.

common		
Version number	1.01.05	
Conversion rate	80ms	~
simulate input	80ms 40ms 20ms 10ms	

4.3.6 SETTING SIMULATE INPUT

Choose normal input or simulate input. The setting is also available on the Monitor screen. Specify the simulate input value between -32768 and +32767. If entering a value under -32768, -32768 is set. If above +32767, +32767 is set.

common		
Version number	1.01.05	
Conversion rate	80ms	
simulate input	simulate input	~
	normal input	
	simulate input	

4.4 R30SVF4 - HIGH-SPEED DC VOLTAGE/CURRENT INPUT MODULE, 4 POINTS

4.4.1 SETTING UNUSED INPUT

Enable or disable each input. Disable the unused inputs.

Input 1		
Unused	CH enable	~
Input range	CH enable	
Fine zero adjustment	CH disable	
Fine gain adjustment	1.0000	
Scaled range Zero	0	
Scaled range Span	10000	

4.4.2 SETTING INPUT RANGE

Choose the input range for the enabled inputs.

Input 1		
Unused	CH enable	
Input range	-10 to +10 V DC	×
Fine zero adjustment	-10 to +10 V DC	
Fine gain adjustment	-5 to +5 V DC -1 to +1 V DC	
Scaled range Zero	0 to 10 V DC	
Scaled range Span	0 to 5 V DC	
Input 2	0 to 1 V DC	
Unused	-0.5 - +0.5 V DC -20 - +20 mA DC	
Input range	4 - 20 mA DC	
Fine zero adjustment	0 - 20 mA DC	

4.4.3 SETTING FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure below shows an example for setting the scaled range Span.

Input 1	
Unused	CH enable
Input range	-10 to +10 V DC
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000

PARAMETER	DESCRIPTION	AVAILABLE RANGE
Fine zero adjustment	Zero (bias) adjustment value	-320.00 to +320.00
Fine gain adjustment	Gain (span) adjustment value	-3.2000 to +3.2000
Scaled range Zero	Scaled value 0%	-32000 to +32000
Scaled range Span	Scaled value 100%	-32000 to +32000

NOTE

Calculation is carried out in the order of the fine gain, fine zero, and scaled range Zero/Span.

Calculation example of fine zero/gain adjustments

Used for fine adjustment such as calibration. Fine zero adjustment = 100.00 (%), fine gain adjustment = 2.0000 With the raw value 50.00%,

Fine zero adj.

$50.00(\%) \times 2.0000 + 100.00(\%) = 200.00(\%)$

Fine gain adj.

Calculated input value

Calculation example of scaled range Zero / Span

Scaled range Zero = -10000, scaled range Span = 10000 With the measured value 50.00% (5000) after calculating the fine adjustments with the scaled range Zero 0 and Span 10000,

Scaled range Span

50.00 (%) Scaled range Zero

$(10000 - (-10000)) / 10000 \times 5000 + (-10000) = 0 (0.00\%)$

Scaled range Zero

(Scaled range Span - Scaled range Zero) Calculated scaled value in measuring 50.00%

4.4.4 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable.

"--" is shown when not uploaded.

common	
Version number	0.01.03
Averaging Number	1
simulate input	normal input

4.4.5 SETTING AVERAGING NUMBER

Choose the averaging number. Setting per input is not available. Set the averaging number for all inputs.

common		
Version number	0.01.03	
Averaging Number	1	~
simulate input	1	
	2	
	8	
	16	
	32 64	
	128	
	256	

4.4.6 SETTING SIMULATE INPUT

Choose normal input or simulate input. The setting is also available on the Monitor screen. Specify the simulate input value between -32768 and +32767. If entering a value under -32768, -32768 is set. If above +32767, +32767 is set.

common		
Version number	0.01.03	
Averaging Number	1	
simulate input	normal input	~
	normal input	
	simulate input	

4.5 R30US4 (R30US2) - UNIVERSAL INPUT MODULE, 4 POINTS (2 POINTS)

The number of inputs for R30US2 is 2 points.

4.5.1 SETTING UNUSED INPUT

Enable or disable each input. Disable the unused inputs.

Input 1	
Unused	CH enable 🗸 🗸
Input type	CH enable
Unit	CH disable
Zero Base	0.000
Full Base	0.000
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Wiring	3wire
Burnout	Up
CJC	Eneable
First Order Lag filter	0.0 (sec)

4.5.2 SETTING INPUT TYPE

Choose the input type for the enabled inputs. Depending on the input type, some parameters are unavailable and grayed out.

DC Current	 Thermocouple
-20 - +20 mA DC	TC PR
	TC K
DC Voltage	TC E
-1000 - +1000 mV DC	TC J
-10 - +10 V DC	TC T
—	TC B
Potentiometer	TC R
ΡΟΤ 0 - 4000 Ω	TC S
ΡΟΤ 0 - 2500 Ω	TC C
ΡΟΤ 0 - 1200 Ω	TC N
ΡΟΤ 0 - 600 Ω	TC U
ΡΟΤ 0 - 300 Ω	TC L
ΡΟΤ 0 - 150 Ω	TC P

Resistor

Resistance 0 - 4000 Ω

Input 1		-
Unused	CH enable	
Input type	-10 - +10 V DC	~
Unit	-20 - +20 mA DC	
Zero Base	-1000 - +1000 mV DC -10 - +10 V DC	
Full Base	POT 0 - 4000 Ω	
Fine zero adjustment	POT 0 - 2500 Ω	
Fine gain adjustment	POT 0 - 600 Ω	
Scaled range Zero	ΡΟΤ 0 - 300 Ω	
Scaled range Span	POT 0 - 150 Ω Resistance 0 - 4000 O	
Wiring	RTD PT 100	
Burnout	RTD PT 500	
CJC	RTD PT 1000 RTD PT 50	
First Order Lag filter	RTD JPT 100	
Input 2	RTD Ni5084 RTD CU10	
Unused	TC PR	
Input type	TC K	
Unit	TC J	
Zero Base	TC T	
Full Base	TCR	
Fine zero adjustment	TC S	
Fine gain adjustment	TCN	
	TC U TC L TC P	

4.5.3 SETTING TEMPERATURE UNIT

Choose the temperature unit from degC (Centigrade), degF (Fahrenheit) and K (absolute temperature). This parameter is available only when a thermocouple or RTD is selected for the input type.

Input 1		
Unused	CH enable	
Input type	TC K	
Unit	degC	~
Zero Base	degC	
Full Base	degF K	
Fine zero adjustment	0.00 (%)	_
Fine gain adjustment	1.0000	
Scaled range Zero	0	
Scaled range Span	10000	
Wiring	3wire	
Burnout	Up	
CJC	Eneable	
First Order Lag filter	0.0 (sec)	

4.5.4 SETTING ZERO / FULL BASES, FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure below shows an example for setting the scaled range Span.

If the same value is entered for the zero base and full base, the scaled values are not calculated but the engineering unit temperature values are returned for thermocouple and RTD inputs. Also, the input ranges corresponding to the individual input types are scaled for DC current, DC voltage, potentiometer and resistor inputs. (e.g. If "-10 - +10 V DC" is specified for the input type and "0" is entered for both the zero base and full base, the scaling calculation is conducted by regarding the zero base to be "-10.0" and full base "10.0.")

Input 1	
Unused	CH enable
Input type	TC K
Unit	degC
Zero Base	0.0
Full Base	1000.0
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Wiring	3wire
Burnout	Up
CJC	Eneable
First Order Lag filter	0.0 (sec)

*1. Factory settings for the zero base and full base are "0."

*2. If the zero base and full base parameters having the same value are downloaded and then uploaded, "0" is shown for the zero base and full base.

^{*3.} If the zero base and full base parameters having the minimum and maximum values in the input range respectively are down-loaded and then uploaded, "0" is shown for the zero base and full base. (e.g. When "-10 - +10 V DC" is specified for the input type, if the zero base and full base parameters having the values "-10.0" and "+10.0" respectively are downloaded and then uploaded, "0" is shown for the zero base and full base.

PARAMETER	DESCRIPTION	INPUT TYPE	AVAILABLE RANGE	
	0% setting value / 100% set- ting value	-20 - +20 mA	-32.000 to +32.000	
		-10 - +10 V		
		POT	-320.00 to +320.00	
Zero Base / Full Base		-1000 - +1000 mV	-3200.0 to +3200.0	
		RTD, TC (degC, K)		
		RTD, TC (degF)	-32000 to +32000	
		0 - 4000 Ω		
Fine zero adjustment	Zero (bias) adjustment value		-320.00 to +320.00	
Fine gain adjustmentGain (span) adjustment valueScaled range ZeroScaled value 0%		Independent from the input	-3.2000 to +3.2000	
		type	-32000 to +32000	
Scaled range Span	Scaled value 100%		-32000 to +32000	

NOTE

Calculation is carried out in the order of the zero base/full base, fine gain, fine zero, and scaled range Zero/Span.

• Calculation example of zero base/full base

Convert engineering unit value to 0 - 100% value Zero base = -100.0 (°C), full Base = 100.0 (°C) With the measured value 50.0 (°C),

Zero base (°C) Full base (°C)

$(50.0 - (-100.0)) / (100.0 - (-100.0)) \times 10000 = 7500 (75.00\%)$ sured value (°C) Fixed value (°C) - 100% conversion value

Measured value (°C)

· Calculation example of fine zero/gain adjustments

Used for fine adjustment such as calibration.

Fine zero adjustment = 100.00 (%), fine gain adjustment = 2.0000 With the raw value 50.00% (with the 0 - 100% conversion value of the zero base/full base 50.00% for temperature),

50.00 (%) × 2.0000 + 100.00 (%) = 200.00 (%) Fine gain adj. + Fine zero adj. Calculated input value

• Calculation example of scaled range Zero / Span

Scaled range Zero = -10000, scaled range Span = 10000 With the measured value 50.00% (5000) after calculating the fine adjustments with the scaled range Zero 0 and Span 10000,

50.00 (%) Scaled range Zero Scaled range Span (10000 - (-10000)) / 10000 × 5000 + (-10000) = 0 (0.00%) Scaled range Zero (Scaled range Span - Scaled range Zero) Calculated scaled value

4.5.5 SETTING WIRING (RTD CONNECTION)

Choose "2wire" or "3wire" in accordance with the number of connection wires of the RTD or resistor. This parameter is available only for the input types of RTD and resistor.

Input 1		
Unused	CH enable	
Input type	RTD PT 100	
Unit	degC	
Zero Base	0.0	
Full Base	0.0	
Fine zero adjustment	0.00 (%)	
Fine gain adjustment	1.0000	
Scaled range Zero	0	
Scaled range Span	10000	
Wiring	3wire	~
Burnout	2wire	
CJC	Swire	
First Order Lag filter	0.0 (sec)	

4.5.6 SETTING BURNOUT

Specify the direction for the burnout.

This parameter is available only for the input types of thermocouple, RTD, potentiometer, and resistor.

Input 1	
Unused	CH enable
Input type	RTD PT 100
Unit	degC
Zero Base	0.0
Full Base	0.0
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Wiring	3wire
Burnout	Up 🗸
CJC	None
First Order Lag filter	Up Down

4.5.7 SETTING CJC

Specify whether or not to enable cold junction compensation when using a thermocouple.

This parameter is available only for the input types of thermocouple.

Input 1		
Unused	CH enable	
Input type	TC K	
Unit	degC	
Zero Base	0.0	
Full Base	0.0	
Fine zero adjustment	0.00 (%)	
Fine gain adjustment	1.0000	
Scaled range Zero	0	
Scaled range Span	10000	
Wiring	3wire	
Burnout	Up	
CJC	Eneable	~
First Order Lag filter	Disable	
Input 2	Eneable	

4.5.8 SETTING FIRST ORDER LAG FILTER

Specify the time constant for the first order lag filtering. Filtering is not performed when "0.0" is entered for this parameter.

Available range: 0.5 - 60.0 (seconds)

Input 1	
Unused	CH enable
Input type	TC K
Unit	degC
Zero Base	0.0
Full Base	0.0
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Wiring	3wire
Burnout	Up
CJC	Eneable
First Order Lag filter	0.0

4.5.9 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable. "-" is shown when not uploaded.

4.5.10 SETTING SIMULATE INPUT

Choose normal input or simulate input. The setting is also available on the Monitor screen. Specify the simulate input value between -32000 and +32000. If entering a value under -32000, -32000 is set. If above +32000, +32000 is set.

version number	1.01.09	
simulate input	normal input	

.....

common

common		
Version number	1.01.09	
simulate input	normal input	~
	normal input	
	simulate input	

4.6 R30YV4 - DC VOLTAGE OUTPUT MODULE, 4 POINTS

4.6.1 SETTING UNUSED OUTPUT

Enable or disable each output. Disable the unused outputs.

Output 1		
Unused	CH enable	~
Output range	CH enable	
Fine zero adjustment	CH disable	
Fine gain adjustment	1.0000	
Scaled range Zero	0	
Scaled range Span	10000	
output at offline or Power ON	-15.00 (%)	

4.6.2 SETTING OUTPUT RANGE

Choose the output range for the enabled outputs.

Output 1		
Unused	CH enable	
Output range	-10 to +10 V DC	~
Fine zero adjustment	-10 to +10 V DC	
Fine gain adjustment	-5 to +5 V DC	
Scaled range Zero	0 to 5 V DC	
Scaled range Span	1 to 5 V DC	
output at offline or Power ON	-15.00 (%)	

4.6.3 SETTING FINE ZERO / GAIN ADJUSTMENTS AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure below shows an example of setting the scaled range Span.

Output 1	
Unused	CH enable
Output range	-10 to +10 V DC
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
output at offline or Power ON	-15.00 (%)

PARAMETER	DESCRIPTION	AVAILABLE RANGE
Fine zero adjustment	Zero adjustment value	-320.00 to +320.00
Fine gain adjustment	Gain adjustment value	-3.2000 to +3.2000
Scaled range Zero	Scaled value 0%	-32000 to +32000
Scaled range Span	Scaled value 100%	-32000 to +32000

NOTE

Calculation is carried out in the order of the scaled range Zero/Span, fine zero, and fine gain.

Calculation example of scaled range Zero / Span

Scaled range Zero = -10000, scaled range Span = 10000 With the output setting value 50% (5000),

Scaled range Zero

Scaled range Zero

$(5000 - (-10000)) \times 10000 / (10000 - (-10000)) = 7500 (75.00\%)$

Output setting value

Scaled range Span

Calculated scaled value (value converted to 0 - 10000 scale)

· Calculation of fine zero/gain adjustments

Used for fine adjustment such as calibration. Fine zero adjustment = 5.00 (%), fine gain adjustment = 1.0100With the output setting value (value converted to 0 - 10000 scale) 75.00%,

75.00 (%) $\times 1.0100 + 5.00$ (%) = 80.75 (%) Fine gain adj. Fine zero adj. Calculated output setting value

* The calculation of scaled range zero/span and fine zero/gain adjustment are calculated by signed 16 bit value. When the process or result of calculation overflows, it is calculated by replacing with upper limit or lower limit of signed 16 bit value. Therefore result may not be the value calculated by above mentioned calculation formula.

4.6.4 SETTING OUTPUT AT OFFLINE OR POWER ON

Specify output for the period from power on until output value is set. Enter a percent data value.

Available range: -15.00 to +115.00

Output 1 Unused CH enable Output range -10 to +10 V DC Fine zero adjustment 0.00 (%) Fine gain adjustment 1.0000 Scaled range Zero 0 Scaled range Span 10000 -15.00 output at offline or Power ON

NOTE

Enter a percent data value even if the scaled ranges are specified. If fine adjustments are specified, the value after adjustments is output.

4.6.5 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable. "-" is shown when not uploaded.

common Version number 1.01.03 simulate output normal output output at offline preset

common Version number simulate output normal output output at offline normal output simulate output

common		
Version number	1.01.03	
simulate output	normal output	
output at offline	Hold	~
	Hold	
	preset	

4.6.6 SETTING SIMULATE OUTPUT

Choose normal output or simulate output. The setting is also available on the Monitor screen. Specify the simulate output value between -32000 and +32000. If entering a value under -32000, -32000 is set. If above +32000, +32000 is set.

4.6.7 SETTING OUTPUT AT OFFLINE

Specify the output value to be used when there is a problem in communication with the host or in R30's internal communication.

When "Hold" is specified, the last value used during normal communication is output. When "preset" is specified, the value entered in "4.6.4 SETTING OUTPUT AT OFFLINE OR POWER ON" is output.

Note that the fine zero/gain adjustments are valid.

4.7 **R30YS4 - DC CURRENT OUTPUT MODULE, 4 POINTS**

SETTING UNUSED OUTPUT 4.7.1 Enable or disable each output.

Disable the unused outputs.

Output 1	
Unused	CH enable 🔹
Fine zero adjustment	CH enable
Fine gain adjustment	CH disable
Scaled range Zero	0
Scaled range Span	10000
output at offline or Power ON	-15.00 (%)

4.7.2 SETTING FINE ZERO / GAIN ADJUSTMENTS AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure in right shows an example of setting the scaled range Span.

Output 1	
Unused	CH enable
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
output at offline or Power ON	-15.00 (%)

PARAMETER	DESCRIPTION	AVAILABLE RANGE
Fine zero adjustment	Zero adjustment value	-320.00 to +320.00
Fine gain adjustment	Gain adjustment value	-3.2000 to +3.2000
Scaled range Zero	Scaled value 0%	-32000 to +32000
Scaled range Span	Scaled value 100%	-32000 to +32000

NOTE

Calculation is carried out in the order of the scaled range Zero/Span, fine zero, and fine gain.

• Calculation example of scaled range Zero / Span Scaled range Zero = -10000, scaled range Span = 10000 With the output setting value 50% (5000),

Scaled range Zero

Scaled range Zero

$(5000 - (-10000)) \times 10000 / (10000 - (-10000)) = 7500 (75.00\%)$

Output setting value

Scaled range Span

Calculated scaled value (value converted to 0 - 10000 scale)

· Calculation of fine zero/gain adjustments

Used for fine adjustment such as calibration. Fine zero adjustment = 5.00 (%), fine gain adjustment = 1.0100 With the output setting value (value converted to 0 - 10000 scale) 75.00%,

75.00 (%) × <u>1.0100</u> + <u>5.00</u> (%) = <u>80.75</u> (%) Fine gain adj. Fine zero adj. Calculated output setting value

4.7.3 SETTING OUTPUT AT OFFLINE OR POWER ON

Specify output for the period from power on until output value is set. Enter a percent data value.

Available range: -15.00 to +115.00

Output 1	
Unused	CH enable
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
output at offline or Power ON	-15.00

NOTE

Enter a percent data value even if the scaled ranges are specified. If fine adjustments are specified, the value after adjustments is output.

4.7.4 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable.

"--" is shown when not uploaded.

common	
Version number	1.01.05
simulate output	normal output
output at offline	preset

4.7.5 SETTING SIMULATE OUTPUT

Choose normal output or simulate output. The setting is also available on the Monitor screen. Specify the simulate output value between -32000 and +32000. If entering a value under -32000, -32000 is set. If above +32000, +32000 is set.

common	
Version number	1.01.05
simulate output	normal output 🔹
output at offline	normal output simulate output

4.7.6 SETTING OUTPUT AT OFFLINE

Specify the output value to be used when there is a problem in communication with the host or in R30's internal communication.

When "Hold" is specified, the last value used during normal communication is output. When "preset" is specified, the value entered in "4.7.3 SETTING OUT-PUT AT OFFLINE OR POWER ON" is output.

Note that the fine zero/gain adjustments are valid.

common	
Version number	1.01.05
simulate output	normal output
output at offline	preset 🔹
	Hold
	preset

4.8 R30TS4 - THERMOCOUPLE INPUT MODULE, 4 points

4.8.1 SETTING UNUSED INPUT

Enable or disable each input. Disable the unused inputs.

Input 1	
Unused	CH enable 🔹 🔻
Input type	CH enable
Unit	CH disable
Zero Base	0.0 (degC)
Full Base	0.0 (degC)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up
CJC	Eneable

4.8.2 SETTING INPUT SENSOR TYPE

Choose the input sensor type for the enabled inputs. The sensors shown below are available.

- K (CA)
- E (CRC)
- J (IC)
- T (CC)
- B (RH)
- R
- S
- C (WRe 5-26)
- N
- U
- L
- P (Platinel II)
- (PR)

4.8.3 SETTING TEMPERATURE UNIT

Choose the temperature unit from degC (Centigrade), degF (Fahrenheit) and K (absolute temperature).

Input 1	
Unused	CH enable
Input type	К (СА) 🔻
Unit	K (CA)
Zero Base	E (CRC)
Full Base	T (CC)
Fine zero adjustment	B (RH)
Fine gain adjustment	S
Scaled range Zero	C (WRe5-26)
Scaled range Span	N
Burnout	Ľ
CJC	P (Platinel II) (PR)

Input 1	
Unused	CH enable
Input type	K (CA)
Unit	degC 🔹
Zero Base	degC
Full Base	degF K
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up
CJC	Eneable

4.8.4 SETTING ZERO / FULL BASES, FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure on right shows an example for setting the scaled range Span.

If the same value is entered for the zero base and full base, the scaled values are not calculated but the engineering unit temperature values are returned for thermocouple inputs.

- *1. Factory settings for the zero base and full base are "0."
- *2. If the zero base and full base parameters are not set (zero base and full base both are "0"), fine zero/gain adjustment is not available. Fine adjustment processing is invalid.

,	
Input 1	
Unused	CH enable
Input type	K (CA)
Unit	degC
Zero Base	0.0 (degC)
Full Base	1000.0 (degC)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up
CJC	Eneable

PARAMETER	DESCRIPTION	TEMPERATURE UNIT	AVAILABLE RANGE
Zero Base / Full Base 0% setting value / 100%set- ting value	degC, K	-3200.0 to +3200.0	
	degF	-32000 to +32000	
Fine zero adjustment	Zero (bias) adjustment value	Independent from the input type	-320.00 to +320.00
Fine gain adjustment	Gain (span) adjustment value		-3.2000 to +3.2000
Scaled range Zero	Scaled value 0%		-32000 to +32000
Scaled range Span Scaled value 100%	Scaled value 100%		-32000 to +32000

NOTE

Calculation is carried out in the order of the zero base/full base, fine gain, fine zero, and scaled range Zero/Span.

CAUTION FOR ZERO BASE/FULL BASE SETTING

• Example of zero base/full base, scaled range zero and scaled range span

When scaling $0 - 100^{\circ}$ C to 0 - 10000, set as follows. Zero base = 0 (°C), Full base = 100 (°C) Scaled range zero = 0, Scaled range span = 10000

Calculation example of zero base/full base

Convert engineering unit value to 0 - 100% value Zero base = 0 (°C), full Base = 100.0 (°C) With the measured value 50.0 (°C),

Zero base (°C) Zero base (°C) $(50.0 - (0)) / (100.0 - (0)) \times 10000$ Measured value (°C) Full base (°C) Fixed value -5000 (50.00%) -100% -100% -100% -100% -100%-100%

• Fine adjustment calculation

% value, which is converted by zero base/full base, is compensated by following formula. **Value after compensation = % value x gain adjustment value + zero adjustment value** Refer to "7.1 SETTING EXAMPLE OF FINE ADJUSTMENT" for setting example.

Calculation example of scaled range Zero / Span

Scaled range Zero = -10000, scaled range Span = 10000 With the measured value 50.00% (5000) after calculating the fine adjustments with the scaled range Zero 0 and Span 10000,

Scaled range Zero	50.00 (%)	Scaled range Zero	Calculated scaled value
(10000 - (-10000)) / 10000	- 5000	+ (-10000) =	0 (0.00%)

Scaled range Span

(Scaled range Span - Scaled range Zero) in measuring 50.00%

4.8.5 SETTING BURNOUT

Specify the direction for the burnout.

Input 1	
Unused	CH enable
Input type	K (CA)
Unit	degC
Zero Base	0.0 (degC)
Full Base	1000.0 (degC)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up 🔻
CJC	None
Input 2	Up Down

4.8.6 SETTING CJC

Specify whether or not to enable cold junction compensation.

Input 1	
Unused	CH enable
Input type	K (CA)
Unit	degC
Zero Base	0.0 (degC)
Full Base	1000.0 (degC)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up
CJC	Eneable 🔹 🔻
Input 2	Disable Eneable

4.8.7 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable. "-" is shown when not uploaded.

common	
Version number	1.01.03
Conversion rate	500ms
simulate input	normal in

4.8.8 SETTING CONVERSION RATE

Choose one of the input signal conversion rates for R30TS4.

Setting per input is not available. Set the rate for all inputs.

common	
Version number	-
Conversion rate	500ms -
simulate input	500ms
	250ms

4.8.9 SETTING SIMULATE INPUT

Choose normal input or simulate input. The setting is also available on the Monitor screen. Specify the simulate input value between -32768 and +32767. If entering a value under -32768, -32768 is set. If above +32767, +32767 is set.

common	
Version number	-
Conversion rate	500ms
simulate input	normal input 🔹 🔻
	normal input
	simulate input

4.9 R30RS4 - RTD INPUT MODULE, 4 points

4.9.1 SETTING UNUSED INPUT

Enable or disable each input. Disable the unused inputs.

Input 1	
Unused	CH enable 🔹 🔻
Input type	CH enable
Unit	CH disable
Zero Base	0.0 (degC)
Full Base	0.0 (degC)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up

4.9.2 SETTING INPUT SENSOR TYPE

Choose the input sensor type for the enabled inputs. The sensors shown below are available.

- Pt100 (JIS '97, IEC)
- Pt100 (JIS '89)
- JPt100 (JIS '89)
- Pt50 (JIS '81)
- Ni100
- Cu10 (25°C)
- Cu50

Input 1	
Unused	CH enable
Input type	Pt100 (JIS'97,IEC) 🔹
Unit	Pt100 (JIS'97,IEC)
Zero Base	Pt100 (JIS'89) JP+100 (JIS'89)
Full Base	Pt50 (JIS'81)
Fine zero adjustment	Ni100
Fine gain adjustment	Cu10(25degC) Cu50
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up

4.9.3 SETTING TEMPERATURE UNIT

Choose the temperature unit from degC (Centigrade), degF (Fahrenheit) and K (absolute temperature).

Input 1	
Unused	CH enable
Input type	Pt100 (JIS'97,IEC)
Unit	degC 🔹
Zero Base	degC
Full Base	degF K
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up

4.9.4 SETTING ZERO / FULL BASES, FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure on right shows an example for setting the scaled range Span.

If the same value is entered for the zero base and full base, the scaled values are not calculated but the engineering unit temperature values are returned for RTD inputs.

*1. Factory settings for the zero base and full base are "0."

*2. If the zero base and full base parameters are not set (zero base and full base both are "0"), fine zero/gain adjustment is not available. Fine adjustment processing is invalid.

Input 1	
Unused	CH enable
Input type	Pt100 (JIS'97,IEC)
Unit	degC
Zero Base	0.0 (degC)
Full Base	1000.0 (degC)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up

PARAMETER	DESCRIPTION	TEMPERATURE UNIT	AVAILABLE RANGE
Zero Base / Full Base	0% setting value / 100%set-	degC, K	-3200.0 to +3200.0
	ting value	degF	-32000 to +32000
Fine zero adjustment	Zero (bias) adjustment value	Independent from the input	-320.00 to +320.00
Fine gain adjustment	Gain (span) adjustment value	type	-3.2000 to +3.2000
Scaled range Zero Scaled range Span	Scaled value 0% Scaled value 100%	-	-32000 to +32000

NOTE

Calculation is carried out in the order of the zero base/full base, fine gain, fine zero, and scaled range Zero/Span.

CAUTION FOR ZERO BASE/FULL BASE SETTING

- Example of zero base/full base, scaled range zero and scaled range span When scaling 0 – 100°C to 0 – 10000, set as follows. Zero base = 0 (°C), Full base = 100 (°C) Scaled range zero = 0, Scaled range span = 10000
- Calculation example of zero base/full base Convert engineering unit value to 0 – 100% value Zero base = 0 (°C), full Base = 100.0 (°C)
 - With the measured value 50.0 (°C),

Zero base (°C) Zero base (°C)

 $(50.0 - (0)) / (100.0 - (0)) \times 10000 = 5000 (50.00\%)$

Measured value (°C) Full base (°C)

Fixed value 0 - 100% conversion value

• Fine adjustment calculation

% value, which is converted by zero base/full base, is compensated by following formula.

Value after compensation = % value x gain adjustment value + zero adjustment value Refer to "7.1 SETTING EXAMPLE OF FINE ADJUSTMENT" for setting example.

Calculation example of scaled range Zero / Span

Scaled range Zero = -10000, scaled range Span = 10000With the measured value 50 00% (5000) after calculating the fine adjustment

With the measured value 50.00% (5000) after calculating the fine adjustments with the scaled range Zero 0 and Span 10000,

Scaled range Zero

50.00 (%) Scaled range Zero Calculated scaled value

(10000 - (-10000)) / 10000 - 5000 + (-10000) = 0 (0.00%)

Scaled range Span

(Scaled range Span - Scaled range Zero) in measuring 50.00%

4.9.5 SETTING BURNOUT

Specify the direction for the burnout.

Input 1	
Unused	CH enable
Input type	Pt100 (JIS'97,IEC)
Unit	degC
Zero Base	0.0 (degC)
Full Base	1000.0 (degC)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Burnout	Up 🔻
Input 2	None
Unused	Down

4.9.6 CONFIRMING VERSION NO.

4.9.7 SETTING CONVERSION RATE

R30RS4.

puts.

The firmware version is shown. This is not editable. "–" is shown when not uploaded.

common Version number 1.01.03 Conversion rate 500ms simulate input normal input

common	
Version number	-
Conversion rate	500ms 🔻
simulate input	500ms
	250ms

4.9.8 SETTING SIMULATE INPUT

Choose normal input or simulate input. The setting is also available on the Monitor screen. Specify the simulate input value between -32768 and +32767. If entering a value under -32768, -32768 is set. If above +32767, +32767 is set.

Choose one of the input signal conversion rates for

Setting per input is not available. Set the rate for all in-

common	
Version number	-
Conversion rate	500ms
simulate input	normal input 🔹 🔻
	normal input
	simulate input

4.10 R30MS4 - POTENTIOMETER INPUT MODULE, 4 points

4.10.1 SETTING UNUSED INPUT

Enable or disable each input. Disable the unused inputs.

Input 1	
Unused	CH enable 🔹 🔻
Zero Base	CH enable
Full Base	CH disable
Scaled range Zero	0
Scaled range Span	10000

4.10.2 SETTING ZERO / FULL BASES AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure on right shows an example for setting the scaled range Span.

If the same value is entered for the zero base and full base, the scaled values are not calculated.

Input 1	
Unused	CH enable
Zero Base	0.00 (%)
Full Base	100.00 (%)
Scaled range Zero	0
Scaled range Span	10000

*1. Factory settings for the zero base and full base are "0.00" and "100.00".

*2. If the zero base and full base parameters are not set (zero base and full base both are same value), scaling is calculated as zero base and full base are "0.00" and "100.00".

PARAMETER	DESCRIPTION	AVAILABLE RANGE
Zero Base / Full Base	0% setting value / 100% setting value	-320.00 to +320.00
Scaled range Zero Scaled range Span	Scaled value 0% Scaled value 100%	-32000 to +32000

NOTE

Calculation is carried out in the order of the zero base/full base, scaled range Zero/Span.

CAUTION FOR ZERO BASE/FULL BASE SETTING

• Example of zero base/full base, scaled range zero and scaled range span

For R30MS4, fine adjustment is performed by setting of zero base/full base, scaled range zero and scaled range span.

Set zero base to the no scaled value of 0% input (0% position of potentiometer), full base to the no scaled value of 100% input (100% position of potentiometer). The no scaled value is indicated on the monitor screen (Refer to "4.10.6 MONITOR SCREEN AND FINE ADJUSTMENT"). Set scaled range zero to the scale value of 0% input (0% position of potentiometer), scaled range span to the scale value of 100% input (100% position of potentiometer). When no scaled value: 0.20 at 0% input, no scaled value: 99.85 at 100% input, setting as follow to scale the value zero/span adjusted to 0 to 10000.

Zero base: 0.20, Full base: 99.85 Scaled range zero: 0, Scaled range span: 10000

Calculation example of scaled range Zero / Span

Scaled range Zero = -10000, scaled range Span = 10000 With the measured value 50.00% (5000) with the scaled range Zero 0 and Span 10000,

Scaled range Zero 50.00 (%) Scaled range Zero Calculated scaled value (10000 - (-10000)) / 10000 - 5000 + (-10000) = 0 (0.00%)

Scaled range Span

(Scaled range Span - Scaled range Zero) in measuring 50.00%

4.10.3 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable. "–" is shown when not uploaded.

4.10.4 SETTING CONVERSION RATE

Choose one of the input signal conversion rates for R30MS4.

The conversion accuracy depends on the rate. Refer to the data sheet of R30MS4 for the detailed information. Setting per input is not available. Set the rate for all inputs.

4.10.5 SETTING SIMULATE INPUT

Choose normal input or simulate input.

The setting is also available on the Monitor screen. Specify the simulate input value between -32768 and +32767. If entering a value under -32768, -32768 is set. If above +32767, +32767 is set.

common	
Version number	1.01.03
Conversion rate	80ms
simulate input	normal inp

common	
Version number	-
Conversion rate	80ms 🔻
simulate input	80ms 40ms 20ms 10ms

common	
Version number	-
Conversion rate	80ms
simulate input	normal input 🔹 🔻
	normal input
	simulate input

4.10.6 MONITOR SCREEN AND FINE ADJUSTMENT

- For monitor screen of R30MS4, also no scaled value is indicated. (0 to 100% data before scaling). Zero/Span adjustment is performed with use of no scaled value. (Refer to "4.10.2 SETTING ZERO / FULL BASES AND SCALED RANGE ZERO / SPAN".)
- Zero/Span adjustment is performed with the settings of zero/full base, scaled range zero and scaled range span in the column "Adjust Parameter".

4.11 R30CT4E - AC CURRENT INPUT MODULE, 4 points

4.11.1 SETTING UNUSED INPUT

Enable or disable each input. Disable the unused inputs.

Input 1	
Unused	CH enable 🔹 🔻
Senser Type	CH enable
Fine zero adjustment	CH disable
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	0
Low-end cutout	1.0 (%)

4.11.2 SETTING INPUT SENSOR TYPE

Choose the input sensor type for the enabled inputs. The sensors shown below are available.

- CLSE-60: 0 600 A AC
- CLSE-40: 0 400 A AC
- CLSE-20: 0 200 A AC
- CLSE-10: 0 100 A AC
- CLSE-05: 0 50 A AC
- CLSE-R5: 0 5 A AC

Input 1	
Unused	CH enable
Senser Type	CLSE-60 (0-600A) 🔹
Fine zero adjustment	CLSE-60 (0-600A)
Fine gain adjustment	CLSE-40 (0-400A) CLSE-20 (0-200A)
Scaled range Zero	CLSE-10 (0-100A)
Scaled range Span	CLSE-05 (0-50A)
Low-end cutout	CLSE-R5 (U-5A) 1.0 (%)

4.11.3 FINE ZERO / GAIN ADJUSTMENTS, AND SCALED RANGE ZERO / SPAN

Specify the setting values. The figure on right shows an example for setting the scaled range Span. If the same value is entered for the scaled range zero and span, the scaled values are not calculated but the engineering unit values are returned.

Input 1	
Unused	CH enable
Senser Type	CLSE-60 (0-600A)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	10000
Low-end cutout	1.0 (%)

PARAMETER	DESCRIPTION	AVAILABLE RANGE	
Fine zero adjustment	0% setting value	-320.00 to +320.00	
Fine gain adjustment	100% setting value	-3.2000 to +3.2000	
Scaled range Zero	Scaled value 0%	0 to 64000	
Scaled range Span	Scaled value 100%	0 to 64000	

NOTE

Calculation is carried out in the order of the fine gain, fine zero, and scaled range Zero/Span.

ENGINEERING UNIT VALUE DISPLAY RANGE

SENSOR TYPE	INPUT RANGE	ENGINEERING UNIT VALUE DISPLAY RANGE
CLSE-60	0 – 600 A	0 - 64000
CLSE-40	0 – 400 A	0 - 46000
CLSE-20	0 – 200 A	0 – 23000
CLSE-10	0 – 100 A	0 - 11500
CLSE-05	0 – 50 A	0 - 5750
CLSE-R5	0 – 5 A	0 - 5750

*2. Sometimes display range may be narrower than shown above, due to processing of fine adjustment.

CAUTION FOR SCALED BANGE ZERO/SPAN SETTING

If the same value is entered for the scaled range zero/span, the scaled range zero/span are set so that 'engineering unit value x 100' (For CLSE-R5, engineering unit value x 1000).

E.g. For sensor CLSE-60, scaled range zero is set to '0', scaled range span is set to '60000'.

• Example of scaled range zero and scaled range span

When scaling 0 - 100% to 0 - 30000, set as follows. Scaled range zero = 0, Scaled range span = 30000 For sensor CLSE-60, measurement value for 600 A equals '30000'.

Fine adjustment calculation

For fine adjustment, % value is compensated by following formula.

Value after compensation = % value x gain adjustment value + zero adjustment value (Zero adjustment value is % value)

Setting example of fine adjustment

For R30CT4E, as disable dropout is not able, it cannot measure 0% input value. In this example, adjustment is performed with 5% and 100% input value. As fine adjustment is done with % value, scaled range zero is set to '0', scaled range span is set to '10000'. Dropout is set to not greater than 3%. (Fine zero is set to '0', fine gain is set to '1.0')

Assuming that monitor value when equivalent to 5% input is X₅, monitor value when equivalent to 100% input is X₁₀₀. Monitor value X₀ when equivalent to 0% input is calculated by following formula.

 $X_0 = (20 \times X_5 - X_{100}) / 19$

By using X₀ and X₁₀₀, fine adjustment setting value is obtained according to "7.1 SETTING EXAMPLE OF FINE AD-JUSTMENT". To use with engineering unit value, after fine zero and fine gain are set, set scaled range span to '0'.

· Calculation example of scaled range

Scaled range zero = 0 and Scaled range span = 30000 are set. When measurement value after fine adjustment with Scaled range zero = 0 and Scaled range span = 10000 is 50.00% (5000), scaled range value is '0'. (For using CLSE-60, measurement value is '15000' at 300 A.)

Scaled range Zero Scaled range Zero 50.00 (%) Calculation value for scaled range $(30000 - (0)) / 10000 \times 5000 + (0) = 15000$ Scaled range Span (Scaled range Span - Scaled range Zero 10000 - 0)

at measuring 50.00%

4.11.4 SETTING Low-end CUTOUT

Specify the value for the Low-end cutout. Setting range is 0.5 to 50.0%, factory setting is 1.0%. The value below the setting value for Low-end cutout is processed as 0%. The Low-end cutout is performed on the value after fine adjustment process.

Input 1	
Unused	CH enable
Senser Type	CLSE-60 (0-600A)
Fine zero adjustment	0.00 (%)
Fine gain adjustment	1.0000
Scaled range Zero	0
Scaled range Span	0
Low-end cutout	1.0

4.11.5 CONFIRMING VERSION NO.

The firmware version is shown. This is not editable. "–" is shown when not uploaded

4.11.6 SETTING CONVERSION RATE

Choose one of the input signal conversion rates for R30CT4E.

Measuring accuracy is different by conversion rate. For detailed information, refer to the specification sheet for R30CT4E. Setting per input is not available. Set the rate for all inputs.

common Version number 1.01.06 Conversion rate 80ms Delay at Power ON 5.0 (sec) simulate input normal input

common	
Version number	-
Conversion rate	80ms 🔻
Delay at Power ON	80ms
simulate input	40ms 20ms
	10ms

4.11.7 DELAY AT POWER ON

Specify the time from power on to start measuring. Setting the time to stabilize the measuring circuit. Setting per input is not available. Set the time for all

inputs.

Setting range: 0.0 to 60.0 sec.

4.11.8 SETTING SIMULATE INPUT

Choose normal input or simulate input.

The setting is also available on the Monitor screen. Specify the simulate input value between 0 and 65535. If entering a value under 0, 0 is set. If above 65535, 65535 is set.

common	
Version number	-
Conversion rate	80ms
Delay at Power ON	5.0
simulate input	normal input

common	
Version number	-
Conversion rate	80ms
Delay at Power ON	5.0 (sec)
simulate input	normal input 🔹 🔻
	normal input
	simulate input

4.12 R30PA2 - TOTALIZED PULSE INPUT MODULE, 2 points

4.12.1 SETTING MAXIMUM COUNT VALUE OF TOTALIZED PULSE

Specify the upper limit of pulse count value.

When the pulse count value reaches the MAX. Count Value and then a pulse is input, the value becomes the value of Count at overflow.

Setting range: 1 – 4294967295 Factory setting: 4294967295

Input 1	
MAX. Count Value	4294967295
Count at overflow	0

4.12.2 SETTING COUNT AT OVERFLOW

The Count at overflow is the value to which the pulse count value is set back when a pulse is input after reaching the Max. Count value.

Setting range: 0 or 1 Factory setting: 0

4.12.3 CONFIRMING VERSION NO.

This is not editable.

The firmware version is shown.

"--" is shown when not uploaded.

Input 1	
MAX. Count Value	4294967295
Count at overflow	0 🔻
	0
	1

common	
Version number	1.01.07
Edge	Down(DI-ON)
Edge for Reset Pulse	Down(DI-ON)
Reset Pulse	disable
Reset / Preset by Master	disable
simulate input	normal input

4.12.4 COUNTING INPUT PULSE UP/DOWN EDGES

Set the edge direction for counting pulses. All the channels are set collectively, so this setting is not available for each channel.

Setting range: Down (DI-ON) Up (DI-OFF) Factory setting: Down (DI-ON)

common	
Version number	1.01.07
Edge	Down(DI-ON)
Edge for Reset Pulse	Down(DI-ON)
Reset Pulse	Up(DI-OFF)
Reset / Preset by Master	disable
simulate input	normal input

4.12.5 DETECTING EDGE DIRECTION OF RESET PULSE

Set the edge direction for resetting count value by terminal input.

Setting range: Down (DI-ON) Up (DI-OFF) Factory setting: Down (DI-ON)

common	
Version number	1.01.07
Edge	Down(DI-ON)
Edge for Reset Pulse	Down(DI-ON) 👻
Reset Pulse	Down(DI-ON)
Reset / Preset by Master	Up(DI-OFF)
simulate input	normal input

4.12.6 EDGE DETECTION OF RESET PULSE

Set enable or disable for whether to reset count value by terminal input.

In the case of not using the reset pulse, set disable in order to prevent unwanted resets caused by noises.

Factory setting: disable

common	
Version number	1.01.07
Edge	Down(DI-ON)
Edge for Reset Pulse	Down(DI-ON)
Reset Pulse	disable 🔻
Reset / Preset by Master	enable
simulate input	disable

4.12.7 RESETTING/PRESETTING BY MASTER

Set 'enable' or 'disable' for whether to reset/preset by master via network.

Factory setting: disable

common	
Version number	1.01.07
Edge	Down(DI-ON)
Edge for Reset Pulse	Down(DI-ON)
Reset Pulse	disable
Reset / Preset by Master	disable 👻
simulate input	enable
	disable

1.01.07

disable

disable

normal input

normal input

simulate input

Down(DI-ON)

Down(DI-ON)

4.12.8 SETTING SIMULATE INPUT

Choose normal input or simulate input. The setting is also available on the Monitor screen. The simulate input setting is not written to R30PA2 even if downloaded. The device starts in normal input mode when powered on.

Factory setting: normal input

Setting simulate input value

Set the simulate input value on the Monitor screen.

Without being limited by the setting values of MAX. Count Value and Count at overflow, the simulate input value is settable within the range below.

common

Reset Pulse

simulate input

Edge

Version number

Edge for Reset Pulse

Reset / Preset by Master

However, for the disabled channel, the input value of Count at CH Disable is overridden.

If a negative number is specified, which is modified to 0. If a number greater than 4,294,967,295 is specified, which is modified to 4,294,967,295.

Setting range: 0 - 4,294,967,295

4.12.9 PRESETTING PULSE COUNT

It is possible to set in advance any value within the specified range of the pulse count value. Set the preset value on the Monitor screen. Enter the preset value and press "Enter" key so that the setting is enabled.

Adjust Parameter	
Input 1	
Preset Count	1234

Preset setting range: 0 – MAX. Count Value of totalized pulse.

IF a value from more than the MAX. Count Value to 4,294,967,295 is specified, which will be ignored (The error massage is not displayed.).

4.13 R30GCIE1 - CC-Link IE Field NETWORK INTERFACE MODULE

4.13.1 NETWORK NO.

Set the network No.	
The range is 1 to 239, initial value is	1.

CC-Link IE Field	
NetWork No.	1
Station ID	2
MAC address	00-10-9C-00-FF-FE
Link Status	DISCONNECT

4.13.2 STATION ID

Station ID set in the R30GCIE1 is displayed. It is not available to change. When not uploaded, "--" is displayed.

CC-Link IE Field	
NetWork No.	1
Station ID	12
MAC address	00-10-9C-00-FF-FE
Link Status	DISCONNECT

4.13.3 MAC ADDRESS

MAC address of the R30GCIE1 is displayed. It is not available to change. When not uploaded, "--" is displayed.

CC-Link IE Field	
NetWork No.	1
Station ID	12
MAC address	00-10-9C-00-FF-FE
Link Status	DISCONNECT

1

12

00-10-9C-00-FF-FE

DISCONNECT

4.13.4 LINK STATUS

4.13.5 VERSION NUMBER

This is not editable.

Data link status at upload is displayed. It is not available to change.

Upload when display needs update.

- When not uploaded, "--" is displayed.
- CYCLIC: Cyclic communication status
- TOKEN-PASS: Token-pass status
- DISCONNECT: When communication is not established.

Version number of the firmware is displayed.

CC-Link IE Field

NetWork No.

MAC address

Station ID

Link Status

When not uploaded, "--" is displayed.

common	
Version number	1.01.03
simulate input/output	normal input/output

4.13.6 SETTING SIMULATE I/O

Choose normal I/O or simulation data. The setting is also available on the Monitor screen. The simulate I/O setting is not written to R30GC1E1 even if downloaded. The device starts in normal I/O mode when powered on. Factory setting: normal I/O

common	
Version number	1.01.03
simulate input/output	normal input/output 🔹 🔻
	normal input/output simulate input/output

4.13.7 MONITOR SCREEN AND SIMULATION DATA

K	Monitor									x
Γ		-								
	NO	Туре								-61
	Comm	R30NECT1 (EtherCA	т)							
	IO[01]	R30GCIE1S (CC-Link data is simulating output	IE)	Ch 1 1234 4321	Ch 2 -1234 -4321		Ch 3 12345 32767	Ch 4 -12345 -32768		E
	IO[02]									
	IO[03]									
	IO[04]									
	IO[05]									
	IO[06]									
	IO[07]									-
	Adjust Parameter					Simulate	Data			
	common				_	Ch 1	Ch 2	Ch 3	Ch 4	
	simulate input/out	put si	mulate	e input/output		input				
						1234	-1234	12345	-12345	
						output				
						4321	-4321	32767	-32768	
						SE	T			
									dose	

On the Monitor screen, input values and out values are displayed as signed integers. As input values, RWw0 (Ch1) to RWw3 (Ch4) are displayed and RWr0 (Ch1) to RWr3 (Ch4) are displayed as output values.

When simulate I/O is selected, simulation data can be set. Specify the simulation data between -32768 and +32767. If entering a value under -32768, -32768 is forcibly set. If above +32767, +32767 is set.

4.14 R30GECT1 - EtherCAT INTERFACE MODULE

Device parameters are not available for R30GECT1. Only 'simulate input/output' can be set.

4.14.1 VERSION NUMBER

Version number of the firmware is displayed, which cannot be edited. When the parameters are yet to be uploaded from the device, '--' is displayed.

common	
Version number	1.01.02
simulate input/output	normal input/output

4.14.2 SETTING SIMULATE I/O

Select 'normal input/output' or 'simulate input/output'.

The setting is also available on the Monitor screen.

The 'simulate input/output' setting is not written to R30GECT1 even if the parameters are downloaded. The device starts in 'normal input/output' mode when powered on.

Factory setting: normal input/output

common	
Version number	1.01.02
simulate input/output	normal input/output 🔹 🔻
	normal input/output simulate input/output

4.14.3 MONITOR SCREEN AND SIMULATE INPUT/OUTPUT

On the Monitor screen, input values and output values are displayed as signed integers.

When 'simulate input/output' is selected, simulate input/output can be set. Set a value within the range of -32768 to +32767. If the entered value is under -32768, -32768 is forcibly set. If the value is above +32767, +32767 is set.

4.15 R30GOUA1 - NETWORK INTERFACE MODULE FOR OPC-UA SERVER

4.15.1 ANONYMOUS LOGIN

Set whether or not to allow anonymous login (No user authentication).

To allow anonymous login, select the data access level between 'Read only' and 'R/W'.

Log in	
Anonymous Log in	No Log in
User Log in	No Log in
Permission0 1	Read only Read/Write
Log in ID	AdminA
Password	admin 123
Permission02	Read only
Log in ID	
Password	

4.15.2 USER LOGIN

Set whether or not to allow user login (User authentication by username and password).

When user login is allowed, up to 2 sets of username and password can be set.

Log in	
Anonymous Log in	Read only
User Log in	non-permission 🔹
Permission01	non-permission
Log in ID	permission Ayuuuna
Password	admin 123
Permission02	Read only
Log in ID	
Password	

4.15.3 PERMISSION01 / 02

Set the data access level for each Log In ID.

Read only
non-permission
Read only 👻
Read only
Read/Write
Read only

4.15.4 LOG IN ID & PASSWORD

Set User name and Password for each Log In ID.

Use alphanumerical characters (upper & lower cases) only.

Log In ID: If the parameter is left blank, the password will be initialized and user login becomes invalid.

Password: If the parameter is left blank, user login becomes invalid.

Log in	
Anonymous Log in	Read only
User Log in	non-permission
Permission01	Read only
Log in ID	AdminA
Password	admin 123
Permission02	Read only
Log in ID	
Password	

4.15.5 IP ADDRESS, SUBNET MASK, DEFAULT GATEWAY, DNS SERVER

Setting range: 0 to 255

Default values	
IP address	: 192.168.0.1
Subnet mask	: 255.255.255.0
Default gateway	: 192.168.0.100
DNS server	: 192.168.13.1

Com. setting	
IP address	192.168.0.1
Subnet mask	255.255.255.0
Default gateway	192.168.0.100
DNS Server01	192.168.13.1
DNS Server02	192.168.13.1
data type	not define
Communication time out 100ms.	300
MACaddress	00-10-9C-47-03-42

4.15.6 DATA TYPE

Set the data types for R30GOUA1.

Default setting: 'not define'

- * When the setting is 'not define', the data type is automatically set 'uint16'
- * When the 2-word and 4-word data are used, select 'uint64' to prevent being separated.

4.15.7 COMMUNICATION TIMEOUT MONITORING TIMER

Set the timer value for communication timeout. When there is no access from an OPC-UA client before the timeout period elapses, a timeout error occurs.

Setting range: 0 to 32757 (0 to 3275.7 seconds) Set to 0 for no monitoring. Default setting: 300 (30 seconds)

Com. setting	
IP address	192.168.0.1
Subnet mask	255.255.255.0
Default gateway	192.168.0.100
DNS Server01	192.168.13.1
DNS Server02	192.168.13.1
data type	not define 🗸 🗸 🗸
Communication time out 100ms.	not define
MACaddress	uint16 uint64

Com. setting	
IP address	192.168.0.1
Subnet mask	255.255.255.0
Default gateway	192.168.0.100
DNS Server01	192.168.13.1
DNS Server02	192.168.13.1
data type	not define
Communication time out 100ms.	300
MACaddress	00-10-9C-47-03-42

4.15.8 MAC ADDRESS

MAC address of the R30GOUA1 is indicated, which is not editable.

'-' is displayed when the parameters are yet to be uploaded from the device.

Com. setting	
IP address	192.168.0.1
Subnet mask	255.255.255.0
Default gateway	192.168.0.100
DNS Server01	192.168.13.1
DNS Server02	192.168.13.1
data type	not define
Communication time out 100ms.	300
MACaddress	00-10-9C-47-03-42

4.15.9 SNTP TIME SYNCHRONIZATION

Set whether or not to allow time synchronization with the SNTP server.

When set to 'SNTP enable', time synchronization is performed at power-on, 0:00, 06:00, 12:00, and 18:00.

Default setting: 'SNTP disable'

Date/Time setting SNTP disable SNTP SNTP Server URL NTP disab SNTP enable Time zone

* When set to 'SNTP enable', be sure to set 'DNS Server', 'SNTP Server URL', and 'Time zone'.

4.15.10 TIME ZONE

Set the UTC time zone.

Setting range: -12 to 14 Default setting: 9 (Japan time)

4.15.11 CONFIRMING VERSION NO.

The firmware version of the R30GOUA1 is indicated, which is not editable.

'-' is displayed when the parameters are yet to be uploaded from the device.

4.15.12 SETTING SIMULATE INPUT/OUTPUT

Choose normal input (normal output) or simulate input (simulate output).

The setting is also available on the Monitor screen.

The simulate input (simulate output) setting is not written to R30GOUA1 even if downloaded. The device starts in normal input (normal output) mode when powered on.

Factory setting: normal input (normal output)

4.15.13 MONITOR SCREEN AND SIMULATION DATA

On the Monitor screen, input values and out values are displayed as signed integers. When simulate I/O is selected, simulation data can be set. Specify the simulation data between -32768 and +32767. If entering a value under -32768, -32768 is forcibly set. If above +32767, +32767 is set

4.15.14 DATE / TIME SETTING

To set the date and time, connect USB cable to USB connector on the R30GOUA1. After started up and connected the R30CFG, upload to recognize the R30GOUA1 as interface module. Date and time can be set on the Monitor screen.

Clicking 'R30GOUA1' in the 'comm' row, 'Date and Time setting' appears in the 'Adjust Parameter'. Edit 'yyyy/mm/dd hh:mm:ss' and press "Enter" to validate the new setting.

Setting range

Year	: 2001 to 2099
Month	: 1 to 12
Date	: 1 to 31
Hour	: 0 to 23
Min.	: 0 to 59
Sec.	: 0 to 59

Default value : 2013/01/01 00:00:00

Do NOT enter a date which does not exist (e.g., February 31). If such a date is entered, the value will not be reflected and the setting will remain unchanged.

 Date/Time setting

 SNTP
 SNTP disable

 SNTP Server URL
 ntp.nict.jp

 Time zone
 Image: Constraint of the set of the set

common	
Version number	1.01.05
simulate input/output	normal input/output

common	
Version number	1.01.05
simulate input/output	normal input/output $~~$ \sim
	normal input/output
	simulate input/output

Adjust Parameter	
Date/Time setting	
Year/Month/Day Hour:Min.:Sec.	2020/03/10 13:55:41

5. BASIC PARAMETERS OF TABLET RECORDER

5.1 TR30

R30 I/O modules mounted on the same installation base with TR30 can be configured using this program. Use the dedicated configurator software (model: TRGCFG) to configure basic settings of the TR30.

6. BASIC PARAMETERS OF WEB DATA LOGGER

6.1 DL30

R30 I/O modules mounted on the same installation base with DL30 can be configured using this program. Use the dedicated configurator software (model: DL30GCFG) to configure basic settings of the DL30.

7. REMARKS

7.1 SETTING EXAMPLE OF FINE ADJUSTMENT

Fine zero/gain adjustment is used for fine adjustment of calibration.

7.1.1 ONLY FINE ZERO ADJUSTMENT IS PERFORMED

Change the fine zero adjustment value on the monitor screen to adjust.

For example, while applying the voltage equivalent to 0% from voltage source, adjust fine zero adjustment value so that monitor value becomes 0%. (When input type is thermocouple, cold junction compensation must be disabled during adjustment.)

7.1.2 FINE ZERO/GAIN ADJUSTMENT IS PERFORMED

Adjustment is available for any two points. Fine adjustment with two points such as Y0 %, Y1 %. 1)

- When input type is thermocouple, cold junction compensation must be disabled during adjustment.
- Set fine zero adjustment to "0.00", fine gain adjustment to "1.0000".
- Set scaled range zero to "0", scaled range span to 10000.

2) While applying the voltage equivalent to Y0 % from voltage source, record the monitor value (X0).

3) While applying the voltage equivalent to Y1 % from voltage source, record the monitor value (X1).

4) Calculate zero/gain adjustment value by following formula.

- Gain adjustment value = (Y1 Y0) / (X1 X0)
- Zero adjustment value = Y0 (X0 x gain adjustment value)
- 5) Set zero/gain adjustment value obtained at step 4, confirm the monitor value after adjustment on the monitor screen.

E.g. Monitor value at 0% input is -85, monitor value at 100% input is 9810.

Y0 = 0, X0 = -0.85Y1 = 100, X1 = 98.10

Gain adjustment value = $(100 - 0) / (98.10 - (-0.85)) \approx 1.0106$ Zero adjustment value = $0 - (-0.85 \times 1.0106) \approx 0.86$

7.2 VERSION HISTORY

Ver.0.1.5 First version, applicable to R30NECT1, R30XN16x and R30YN16x

- Ver.0.05.21 Applicable to TR30 and R30SV4
- Ver.1.01.32 Applicable to R30US2 and R30US4
- Ver.1.03.37 Applicable to R30TS4
- Ver.1.03.38 Applicable to R30RS4
- Ver.1.04.41 Applicable to R30MS4
- Ver.1.05.xx Applicable to R30CT4E
- Ver.1.06.xx Applicable to R30YS4
- Ver.1.09.xx Applicable to R30SVF4 and R30NCIE1
- Ver.1.11.xx Applicable to R30PA2, supports Windows 10
- Ver.1.13.xx Applicable to R30GCIE1, R30NE1
- Ver.1.14.xx Applicable to R30GECT1, R30NOUA1, and DL30
- Ver.1.15.xx Applicable to R30GOUA1
- Ver.1.16.xx Applicable to R30NCIT1
- Ver.1.17.xx R30XN16x and R30YN16x supported "simulate input/output".