High-density Signal Conditioners 10-RACK

DC ALARM

Functions \& Features

- Providing relay contact closures at preset DC input levels
- Single or dual (Hi/Lo) trip
- Multi-turn screwdriver setpoint adjustments

Typical Applications

- Annunciator
- Various alarm applications

MODEL: 10AS-[1][2]-R[3]

ORDERING INFORMATION

- Code number: 10AS-[1][2]-R[3]

Specify a code from below for each of [1] through [3]. (e.g. 10AS-62-R/Q)

Use Ordering Information Sheet (No. ESU-1033) to specify output code 0 specifications.

- Special input range (For code 0)
- Specify the specification for option code /Q (e.g. /C01)

[1] INPUT

Current
A: 4-20 mA DC (Input resistance 250Ω)
D: 0-20 mA DC (Input resistance 50Ω)
G: 0-1 mA DC (Input resistance 1000Ω)
H: 10-50mA DC (Input resistance 100Ω)
Voltage
3: 0-1 V DC (Input resistance $1 \mathrm{M} \Omega \mathrm{min}$.)
4: 0-10 V DC (Input resistance $1 \mathrm{M} \Omega \mathrm{min}$.)
5: $0-5 \mathrm{~V}$ DC (Input resistance $1 \mathrm{M} \Omega \mathrm{min}$.)
6: 1 - 5 V DC (Input resistance $1 \mathrm{M} \Omega \mathrm{min}$.)
0: Specify voltage (See INPUT SPECIFICATIONS)

[2] ALARM OUTPUT

1: Single (SPDT); Hi in power failure
2: Single (SPDT); Lo in power failure
3: Dual (2 points SPDT); Hi in power failure
4: Dual (2 points SPDT); Lo in power failure
5: Hi/Lo (2 points SPDT); ON at alarm; OFF in power failure
7: Hi/Lo (2 points SPDT); ON at alarm and in power failure
8: Hi/Lo (2 points SPDT); OFF at alarm and in power failure
0 : Specify

POWER INPUT

DC Power
R: 24 V DC
(Operational voltage range $24 \mathrm{~V} \pm 10 \%$, ripple $10 \% p-\mathrm{p}$ max.)

[3] OPTIONS

blank: none
/Q: With options (specify the specification)

SPECIFICATIONS OF OPTION: Q

COATING (For the detail, refer to our web site.)
/C01: Silicone coating
/C02: Polyurethane coating
/C03: Rubber coating

GENERAL SPECIFICATIONS

Construction: Rack-mounted; terminal access via screw terminals at the front and via card-edge connector at the rear; terminal cover provided

Connection

Input: M3.5 screw terminals (torque $0.8 \mathrm{~N} \cdot \mathrm{~m}$)
Output: M3.5 screw terminals (torque $0.8 \mathrm{~N} \cdot \mathrm{~m}$)
Power input: Supplied from card-edge connector
Screw terminal: Nickel-plated steel
Housing material: Flame-resistant resin (black)
Isolation: Input to output to power
Setpoint adjustments: Multi-turn screwdriver adjustments (front); -5 - +105 \% independently
Hysteresis (deadband): Approx. 1 \%
Front LEDs: Red LED turns on when the coil is energized.
Power ON timer: Relays de-energized for approx. 2 seconds after power is turned on.

INPUT SPECIFICATIONS

■ DC Current: Input resistor incorporated

- DC Voltage: 0-300 V DC

Minimum span: 1 V
Offset: Max. 1.5 times span
Input resistance: $\geq 1 \mathrm{M} \Omega$

OUTPUT SPECIFICATIONS

\square Relay Contact: 100 V AC @ 1 A ($\cos \varnothing=1$)
120 V AC @ 1 A ($\cos \varnothing=1$)
240 V AC @ 0.5 A ($\cos \varnothing=1$)
30 V DC @ 1 A (resistive load)
Maximum switching voltage: 380 V AC or 125 V DC
Maximum switching power: 120 VA or 30 W
Minimum load: 5 V DC @ 10 mA
Mechanical life: 5×10^{7} cycles
For maximum relay life with inductive loads, external protection is recommended.

Alarm Trip Operation Terminal No. in parentheses

- Output Code: 1, 2

- Output Code: 3, 4

- Output Code: 5, 7

- Output Code: 8

Trip Operation in Power Failure

- Output code 1: Terminals 3-8 turn ON
- Output code 2: Terminals $5-8$ turn ON
- Output code 3: Terminals 3-8, 6-8 turn ON
- Output code 4: Terminals 5-8, $7-8$ turn ON
- Output code 5, 8: Terminals 3-8,7-8 turn OFF
- Output code 7: Terminals 3-8, 7-8 turn ON

INSTALLATION

Current consumption: Approx. 80 mA with dual alarm Operating temperature: -5 to $+55^{\circ} \mathrm{C}\left(23\right.$ to $131^{\circ} \mathrm{F}$)
Operating humidity: 30 to 90 \%RH (non-condensing)
Mounting: Standard Rack 10BXx
Weight: $200 \mathrm{~g}(0.44 \mathrm{lb})$

PERFORMANCE in percentage of span

Trip point repeatability: $\pm 0.1 \%$
Temp. coefficient: $\pm 0.015 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.008 \% /{ }^{\circ} \mathrm{F}\right)$
Response time: Approx. 0.5 sec . ($0-100 \%$ at 90% setpoint)
Line voltage effect: $\pm 0.1 \%$ over voltage range
Insulation resistance: $\geq 100 \mathrm{M} \Omega$ with 500 V DC
Dielectric strength: 500 V AC @ 1 minute
(input to output to power)
1500 V AC @ 1 minute (input or output or power to ground)

EXTERNAL VIEW

\bigcirc	
(1) 2	Single or Dual Output 1
(3)	or High Alarm LED
(5) (6)	Single or Dual Output 1 or High Setpoint Adj.
0 O	Dual Output 2 or Low Setpoint Adj.
7$)$ 8$)$ 0	Dual Output 2 or Low Alarm LED

EXTERNAL DIMENSIONS \& TERMINAL ASSIGNMENTS unit: mm [inch]

SCHEMATIC CIRCUITRY \& CONNECTION DIAGRAM

\square Relay Protection
-AC Powered

■ DUAL ALARM

Relay actions are determined by output codes.

* Input shunt resistor incorporated for current input.
**With code 3, 4 (dual alarm), Output 1 is assigned to Hi ,
while Output 2 is assigned to Lo terminals.
The diagram illustrates relay actions for the output code 5 or 8 .

Specifications are subject to change without notice.

