Hybrid IC Isolation Amplifiers 20 Series

ISOLATION AMPLIFIER

(current output, 3-port isolation)

Functions & Features

- Being used for printed wiring board installation
- High-linearity
- Low power consumption
- Small installation area in printed wiring board
- Isolating between input, output and power
- Isolation between input, output and power supply up to 1500V AC
- 12 V DC power supply
- Current output

Typical Applications

- Isolating the fiels and output circuit of microprocessor to reduce common mode noise
- Available for manufacturers of small-lot products to omit the development of isolation circuit

MODEL: 20VS5-301-S

ORDERING INFORMATION

• Code number: 20VS5-301-S

INPUT RANGE 0 - 5 V DC OUTPUT RANGE 0 - 20 mA DC

POWER INPUT

DC Power **S**: 12 V DC

GENERAL SPECIFICATIONS

Construction: Hybrid IC **PWB coating**: Silicone

Isolation: Input or reference voltage source to output to

power supply

INPUT SPECIFICATIONS

■ DC Voltage

Input: 0 - 5.5 V DC

Input resistance: 20 $k\Omega$ with 20 $k\Omega$ externally attached

(Gain varies depending on the input resistance. For details,

refer to APPLICATION EXAMPLE.)

Overload input voltage: 10 V DC continuous

Input offset voltage: ±30 mV

Input bias current: 2 nA TYP. (@25°C) (which is the internal amplifier's value (not measurable from the outside))

OUTPUT SPECIFICATIONS

■ DC Current: 0 - 22 mA DC

Load resistance: \leq 550 Ω @ 12 V power input and 20 mA

output

Output impedance: $\geq 1 \text{ M}\Omega$

REFERENCE VOLTAGE SOURCE

Output voltage: ±10 V DC ±10 %

Load current: ≤ 5 mA

INSTALLATION

Power input

•DC: Operational voltage range: Rating ±10 %, ripple 2 %p-p max.; ≤ 70 mA with 20 mA output Operating temperature: -10 to +70°C (14 to 158°F) Operating humidity: 30 to 90 %RH (non-condensing) Mounting: Soldering to the printed wiring board

Weight: 20 g (0.71 oz)

PERFORMANCE in percentage of span

Linearity: ± 0.05 % (at output 0 - 20 mA) @G = 1

Temp. coefficient: ±80 ppm/°C

Frequency characteristics: Approx. 950 Hz (-3 dB)

Response time: \leq 600 μ sec. (0 - 90 %) Conversion gain: $\times 1 \pm 10$ % @ 250 Ω load Gain adjustable range: $G = \times 1$ to $\times 10$ Line voltage effect: ± 0.05 % over voltage range

Insulation resistance: $\geq 100 \text{ M}\Omega$ with 500 V DC Dielectric strength: 1500 V AC @1 minute (input or reference voltage source to output to power) CMRR: $\geq 100 \text{ dB}$ (500 V AC 50/60 Hz)

EXTERNAL DIMENSIONS & TERMINAL ASSIGNMENTS unit: mm [inch]

SCHEMATIC CIRCUITRY & CONNECTION DIAGRAM

APPLICATION EXAMPLE

 $I_0 = 20 \text{ K}\Omega/(R_1 + VR_1) \times (Vin/120 \Omega)$

 R_2 : approx. 2 $M\Omega$, VR_2 : 50 $k\Omega$

 $R_1+VR_1=41.6~k\Omega$; 20 mA output with 5 V input $R_1+VR_1=20.8~k\Omega$; 20 mA output with 2.5 V input

 R_1 's and R_2 's resistance temperature coefficients: $\pm 20 - \pm 50$ ppm/°C with tolerance of $\pm 1\%$

VR₁'s and VR₂'s resistance temperature coefficients: ±100 ppm/°C

 Λ

Specifications are subject to change without notice.