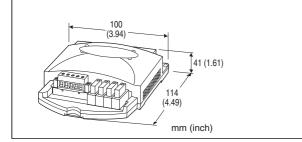
MODEL: MD-DNS


Lightning Surge Protectors for Electronics Equipment M-RESTER

LIGHTNING SURGE PROTECTOR FOR DeviceNet

Load capacity 2 A

Functions & Features

• Designed specifically to protect devices connected to DeviceNet from lightning surges

MODEL: MD-DNS

ORDERING INFORMATION

• Code number: MD-DNS

GENERAL SPECIFICATIONS

Construction: Stand-alone

Connection: Euro type connector terminal

Applicable wire size: 0.2 to 2.5 mm², stripped length 10 mm

Housing material: Flame-resistant resin (black)

Alarm indicator: Surge absorber failure indicator turns white

when the fuse is blown.

Alarm relay contact: Turns on in an abnormality of surge

absorber element (when the safety fuse is blown).

Rating: 30 V DC @ 0.5 A (resistive load)
Max. switching voltage: 125 V AC/DC

Max. switching power: 25 VA Min. load: 5 V DC @ 1 mA

ODVA approval: Not approved (No relevant product

category exists for surge protectors.)

INSTALLATION

Operating temperature: -5 to +55°C (23 to 131°F)
Operating humidity: 30 to 90 %RH (non-condensing)

Mounting: Surface or DIN rail **Weight**: 400 g (0.88 lb)

Number of modules: Max. 4 modules per network

PERFORMANCE

Discharge voltage (peak voltage)

Signal line

Line to line: ±5 V min. Line to ground: ±280 V min.

Power line

Line to line: 26 V min. Line to ground: ±280 V min.

• Drain

Line to ground: ±280 V min.

Maximum surge voltage

(The maximum voltage that could pass through M-RESTER. Protected equipment must be able to withstand this voltage for very short time period.)

Signal line

Line to line: ±18 V max. Line to ground: ±800 V max.

Power line

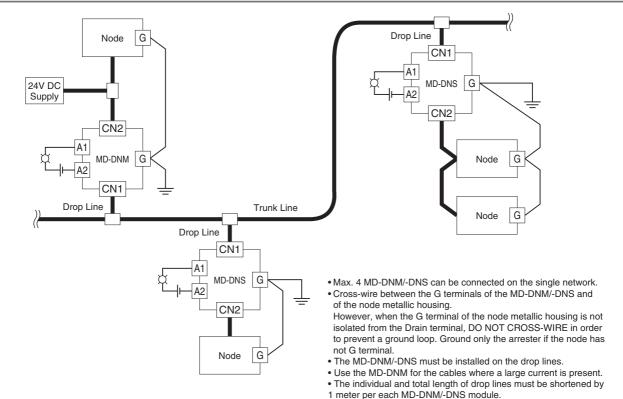
Line to line: 120 V min. Line to ground: ±650 V max.

• Drain

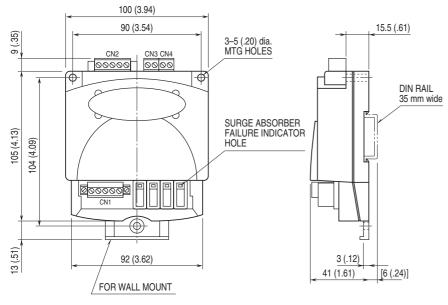
Line to ground: ± 800 V max. Response time: $\leq 0.1~\mu sec.$

Leakage current

Signal line: ≤ 0.3 mA at ±5 V DC
 Power line: ≤ 0.3 mA at 26 V DC
 Line to ground: ≤ 20 µA at ±280 V DC
 Discharge current capacity: 1500 A


Maximum load current
• Signal line: 100 mA
• Power line: 2 A

Internal series resistance • Signal line: $2 \Omega \times 2$ • Power line: $\leq 0.2 \Omega$ Maximum line voltage • Signal line: $\pm 5 \text{ V}$ • Power line: 26 V


Capacitance

Signal line: Approx. 25 pF @ 100 kHz
Line to ground: Approx. 25 pF @ 100 kHz

CONNECTION EXAMPLES

DIMENSIONS unit: mm (inch)

■ TERMINAL WIRING

•CN1

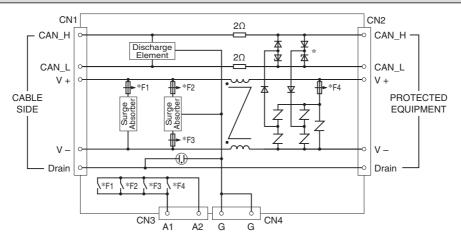
Unit side connector: MSTBV 2,5/5-GF-5,08AU

(Phoenix Contact)

Cable side connector: MVSTBR 2,5/5-STF-5,08AUM (Phoenix Contact)

	FUNCTION
Red	V+
White	CAN-H
Bare	DRAIN
Blue	CAN-L
Black	V–

•CN2


Unit side connector: MSTB 2,5/5-GF-5,08AU (Phoenix Contact)

Cable side connector: MSTB 2,5/5-STF-5,08AUM (Phoenix Contact)

	FUNCTION
Black	V-
Blue	CAN-L
Bare	DRAIN
White	CAN-H
Red	V+

SCHEMATIC CIRCUITRY

*DO NOT CONNECT the communication line across CAN_H and CAN_L. Such a wrong connection may destroy diodes, or result in a network malfunction caused by a power line voltage decrease.

Specifications are subject to change without notice.