MODEL: MEPA

## **Plug-in Signal Conditioners M-UNIT**

### PHASE ANGLE TRANSDUCER

#### **Functions & Features**

- Providing a DC output signal in proportion to phase angle
- DC output containing little ripple is ideal for computer input
- Isolation up to 2000 V AC
- · High-density mounting

#### **Typical Applications**

- Centralized monitoring and control of power management system in a manufacturing facility or building
- Measuring phase angle for a motor



## MODEL: MEPA-1[1][2][3]-[4] [5]

#### ORDERING INFORMATION

• Code number: MEPA-1[1][2][3]-[4][5]

Specify a code from below for each of [1] through [5]. (e.g. MEPA-11PA-C/Q)

(c.g. MEI A-111 A-C/Q)

- Special output range (For codes Z & 0)
- Specify the specification for option code /Q (e.g. /C01/S01)

#### **CONFIGURATION**

1: 3-phase / 3-wire

### [1] INPUT (balanced load)

1: 110 V / 5 A AC

2: 110 V / 1 A AC

3: 220 V / 1 A AC

4: 220 V / 5 A AC

# [2] OUTPUT SIGNAL POLARITY

P: Negative in lag, positive in lead M: Negative in lead, positive in lag

## [3] OUTPUT

Current

A: 4 - 20 mA DC (Load resistance 600  $\Omega$  max.)

**B**: 2 – 10 mA DC (Load resistance 1200  $\Omega$  max.)

C: 1 – 5 mA DC (Load resistance 2400  $\Omega$  max.)

**D**: 0 – 20 mA DC (Load resistance 600  $\Omega$  max.)

**E**: 0 - 16 mA DC (Load resistance 750  $\Omega$  max.)

**F**: 0 – 10 mA DC (Load resistance 1200  $\Omega$  max.)

**G**: 0 - 1 mA DC (Load resistance 12 k $\Omega$  max.)

**GW**: -1 - +1 mA DC (Load resistance 10 k $\Omega$  max.) **Z**: Specify current (See OUTPUT SPECIFICATIONS)

Voltage

1: 0 - 10 mV DC (Load resistance 10 k $\Omega$  min.)

**2**: 0 – 100 mV DC (Load resistance 100 k $\Omega$  min.)

**3**:  $0 - 1 \text{ V DC (Load resistance } 1000 \Omega \text{ min.)}$ 

**4**: 0 – 10 V DC (Load resistance 10 kΩ min.)

 $\mbox{\bf 5}{:}~0$  – 5~V DC (Load resistance 5000  $\Omega$  min.)

**6**: 1 – 5 V DC (Load resistance 5000  $\Omega$  min.)

**1W**: -10 – +10 mV DC (Load resistance 10 kΩ min.)

**2W**: -100 - +100 mV DC (Load resistance 100 k $\Omega$  min.)

**3W**: -1 - +1 V DC (Load resistance 1000  $\Omega$  min.)

**4W**: -10 - +10 V DC (Load resistance 10 kΩ min.)

**5W**: -5 - +5 V DC (Load resistance 5000  $\Omega$  min.)

**0**: Specify voltage (See OUTPUT SPECIFICATIONS)

# [4] POWER INPUT

**AC Power** 

**B**: 100 V AC

**C**: 110 V AC

**D**: 115 V AC **F**: 120 V AC

**G**: 200 V AC

H: 220 V AC

J: 240 V AC

DC Power

**S**: 12 V DC

**R**: 24 V DC

**V**: 48 V DC

P: 110 V DC

### [5] OPTIONS

blank: none

**/Q**: With options (specify the specification)

### **SPECIFICATIONS OF OPTION: Q (multiple selections)**

COATING (For the detail, refer to our web site.)

/C01: Silicone coating

/C02: Polyurethane coating

/C03: Rubber coating

TERMINAL SCREW MATERIAL

/S01: Stainless steel

### **GENERAL SPECIFICATIONS**

Construction: Plug-in

Connection: M3.5 screw terminals

Screw terminal: Nickel-plated steel (standard) or stainless

steel

Housing material: Flame-resistant resin (black)

**Isolation**: Voltage input to current input to output to power **Overrange output**: Approx. -10 to +120 % at 1 - 5 V

Zero adjustment: -5 to +5 % (front) Span adjustment: 95 to 105 % (front)

## **INPUT SPECIFICATIONS**

Frequency: 50 / 60 Hz
• Current Input

Input burden: ≤ 0.1 VA (Input 1A)

 $\leq$  0.5VA (Input 5A)

Operational range: 10 - 120% of rated value

Overload capacity: 1000% @ 3 sec., 200% @ 10 sec., 120%

continuousVoltage Input

Input burden: Approx. 0.5 VA

Operational range: 85 - 120% of rated value

Overload capacity: 150% @ 10 sec., 120% continuous

■ Input range:

Lag 60° - 0 - lead 60° Lead 60° - 0 - lag 60°

#### **OUTPUT SPECIFICATIONS**

■ DC Current: 0 - 20 mA DC and ± 1 mA

Minimum span: 1 mA Offset: Max. 1.5 times span

Load resistance: Output drive 12 V maximum; 10 V for [±]

output

**■ DC Voltage**: -10 - +12 V DC

Minimum span: 5 mV Offset: Max. 1.5 times span

Load resistance: Output drive 1 mA max. at ≥ 0.5 V

#### ■ OPERATION DIAGRAM (example)

#### · Negative in lag, positive in lead





#### • Negative in lead, positive in lag





Note: When there is no input voltage or 5% or less of the rated input current, the output may become unstable (hunting).

### **INSTALLATION**

**Power input** 

•AC: Operational voltage range: rating -15/+10 %,

50/60 Hz, approx. 2 VA

• **DC**: Operational voltage range: rating ±10 %, or 85 - 150 V for 110 V rating, ripple 10 %p-p max.,

approx. 2 W (18 mA at 110 V)

Operating temperature: -5 to +60°C (23 to 140°F)
Operating humidity: 30 to 90 %RH (non-condensing)

Mounting: Surface or DIN rail Weight: 400 g (0.88 lb)

## **PERFORMANCE** in percentage of span

Accuracy:  $\pm 2$  % with balanced load Temp. coefficient:  $\pm 0.2$  %/°C ( $\pm 0.11$  %/°F) Response time:  $\leq 1$  sec. (0 - 90 %)

**Ripple**: 0.5 %p-p max. (50/60 Hz)

Line voltage effect:  $\pm 0.1$  % over voltage range Insulation resistance:  $\geq 100$  M $\Omega$  with 500 V DC Dielectric strength: 2000 V AC @ 1 minute

(voltage input to current input to output to power to ground)

## **CONNECTION DIAGRAM**

#### ■3-PHASE/3-WIRE



\*CT Protector (model: CTM) attached to these terminals.

# **EXTERNAL DIMENSIONS** unit: mm [inch]



• When mounting, no extra space is needed between units.

# TERMINAL ASSIGNMENTS unit: mm [inch]



<sup>\*\*</sup>The transducer can be powered from the input voltage when the voltage is sufficiently stable and meets other supply voltage requirements.

Specifications are subject to change without notice.