
MODEL: M5VV

Super-mini Terminal Block Signal Conditioners M5-UNIT

VOLTAGE DIVIDER

Functions & Features

- Steps down a voltage too high to be input to a general transmitter
- Divided to 1/1000 or by a specified ratio

MODEL: M5VV-[1][2]

ORDERING INFORMATION

• Code number: M5VV-[1][2]

Specify a code from below for each of [1] and [2].

(e.g. M5VV-1/Q)

- Special ratio (e.g. 1/300)
- Specify the specification for option code /Q (e.g. /C01/S01)

[1] DIVIDING RATIO

1: 1/1000 0: Specify

[2] OPTIONS

Other Options **blank**: none

/Q: Option other than the above (specify the specification)

SPECIFICATIONS OF OPTION: Q (multiple selections)

COATING (For the detail, refer to our web site.)

/C01: Silicone coating /C02: Polyurethane coating /C03: Rubber coating TERMINAL SCREW MATERIAL

/S01: Stainless steel

GENERAL SPECIFICATIONS

Construction: Terminal block

Connection: M3.5 screw terminals (torque 0.8 N·m) **Screw terminal**: Nickel-plated steel (standard) or stainless

steel

Housing material: Flame-resistant resin (black)

INPUT & OUTPUT

Dividing ratio: 1/300 - 1/1000

Input voltage: Any specific DC voltage value up to ±1000 V

Input resistance: Approx. 1.1 $M\Omega$

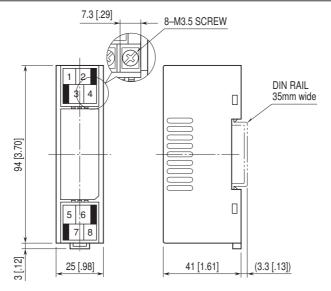
Output voltage: Input Voltage \times Dividing Ratio Output resistance: Approx. 1.1 k Ω with 1/1000 ratio; Output Resistance [k Ω] \approx Dividing Ratio \times 1100

INSTALLATION

Operating temperature: -20 to +65°C (-4 to +149°F) Operating humidity: 30 to 90 %RH (non-condensing)

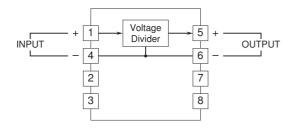
Mounting: DIN rail **Weight**: 80 g (2.8 oz)

PERFORMANCE in percentage of dividing ratio


Accuracy: ±0.2 %

Temp. coefficient: ± 0.005 %/°C (± 0.003 %/°F) Insulation resistance: ≥ 100 M Ω with 500 V DC

Dielectric strength: 2000 V AC @1 minute (input or output


to ground)

EXTERNAL DIMENSIONS & TERMINAL ASSIGNMENTS unit: mm [inch]

• When mounting, no extra space is needed between units.

SCHEMATIC CIRCUITRY & CONNECTION DIAGRAM

 Λ

Specifications are subject to change without notice.