
Remote I/O R7 Series

CC-Link I/O MODULE

(CC-Link V.1.10; DC voltage output, 4 points, isolated)

Functions & Features

- 4 points DC voltage output module for CC-Link
- Output range can be selected with the front DIP switches for all channels
- Individual channels, zero adjustment, span adjustment, and scaling can be set with the configurator software (model: R7CON)

MODEL:R7C-YV4-[1][2]

ORDERING INFORMATION

• Code number: R7C-YV4-[1][2]

Specify a code from below for each of [1] and [2]. (e.g. R7C-YV4-AR/Q)

• Specify the specification for option code /Q (e.g. /C01)

If you need factory setting, use Ordering Information Sheet (No. ESU-7801-AD).

I/O TYPE

YV4: DC voltage output, 4 points

[1] POWER INPUT

DC Power

R: 24 V DC

(Operational voltage range 24 V ±10 %, ripple 10 %p-p max.)

Universal

AR: 24 V AC/24 V DC (universal)

(Operational voltage range 24 V AC \pm 10 %, 50 - 60 Hz /

24 V DC±10 %, ripple 10 %p-p max.)

(CE not available)

[2] OPTIONS

blank: none

/Q: With options (specify the specification)

SPECIFICATIONS OF OPTION: Q

COATING (For the detail, refer to our web site.)

/C01: Silicone coating /C02: Polyurethane coating /C03: Rubber coating

CAUTION

• Extension modules cannot be connected.

RELATED PRODUCTS

- PC Configurator cable (model: MCN-CON or COP-US)
- PC configurator software (model: R7CON)
- CSP+ file

The configurator software and CSP+ file are downloadable at our web site.

CSP+ file is also downloadable at CC-Link Partner Association's web site.

GENERAL SPECIFICATIONS

Connection: M3 separable screw terminal (torque $0.5 \text{ N} \cdot \text{m}$) Solderless terminal: Refer to the drawing at the end of the section

Recommended manufacturer: Japan Solderless Terminal

MFG. Co., Ltd., Nichifu Co., Ltd.

Applicable wire size: 0.25 to 1.65 mm² (AWG 22 to 16)

Screw terminal: Nickel-plated steel

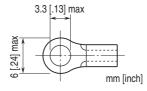
Housing material: Flame-resistant resin (gray)

Isolation: Output 0 to output 1 to output 2 to output 3 to

power to CC-Link or FG

Zero adjustments: Configurable via R7CON
Span adjustments: Configurable via R7CON
Output range: Selectable with the front DIP SW or

configurable via R7CON


Output at the loss of communication:

Hold the output (*), Reset the output Selectable with the front DIP SW

(*) Factory default setting

Status indicator LED: PWR

Configurator connection: 2.5 dia. miniature jack
■Recommended solderless terminal

CC-Link COMMUNICATION

CC-Link: Ver.1.10

Connector: M3 screw terminal

Network cable: CC-Link cable designated by Mitsubishi

Electric

Station number: 1 - 64 (rotary switch, default:00)

Station type: Remote device

Data allocation: 1

Baud rate setting: 156 kbps (default), 625 kbps, 2.5 Mbps,

5 Mbps, 10 Mbps (rotary switch)

Terminating resistor: Built-in (side DIP SW, default: disable)

Status indicator LEDs: RUN, ERR, SD, RD

output clear (fix the output at -15 % or approx. -11.5 V) and output hold (last normally received data) with DIP switch. At the startup, it outputs -15 % or approx. -11.5 V until the communication is established and normal data is received.

OUTPUT SPECIFICATIONS

Output range: -10 - +10 V DC (*), -5 - +5 V DC, 0 - 10 V DC,

0 - 5 V DC, 1 - 5 V DC (*) factory default setting Load resistance: \geq 20 k Ω Operational range

Except -10 to +10 V DC: -15 to +115 % of output range

-10 to +10 V DC: Approx. -11.5 to +11.5 V DC

INSTALLATION

Current consumptionAC: Approx. 180 mADC: Approx. 90 mA

Operating temperature: -10 to +55°C (14 to 131°F) Storage temperature: -20 to +65°C (-4 to +149°F) Operating humidity: 30 to 90 %RH (non-condensing) Atmosphere: No corrosive gas or heavy dust

Mounting: DIN rail (35 mm rail)
Weight: 180 q (0.40 lb)

PERFORMANCE

Conversion accuracy: $\pm 0.1~\%$

Data range: 0 – 10000 of the output range (Scaling of converted data is configurable with the

configurator software (model: R7CON)) Temp. coefficient: ± 0.015 %/°C (± 0.008 %/°F)

Response time: 250 msec. (0 - 90 %)

Insulation resistance: $\geq 100 \text{ M}\Omega$ with 500 V DC

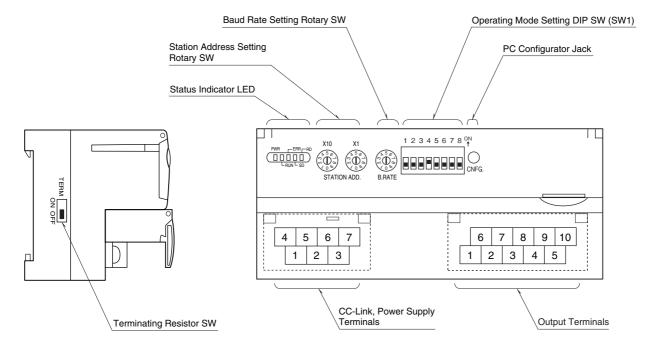
Dielectric strength: 1500 V AC @ 1 minute (output 0 to output 1 to output 2 to output 3 to power to CC-Link or FG)

STANDARDS & APPROVALS

EU conformity: EMC Directive EMI EN 61000-6-4 EMS EN 61000-6-2

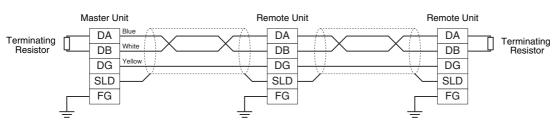
RoHS Directive

FUNCTIONS


Output hold function:

Output at the loss of communication is selectable from

EXTERNAL VIEW


■ SIDE VIEW

■ FRONT VIEW

COMMUNICATION CABLE CONNECTIONS

■ MASTER CONNECTION

Note: Be sure to connect the terminating resistor across DA and DB at both ends of communication line.

When this unit is located at an end, turn the terminating resistor SW ON.

The Master Unit can be located at not only both ends but also any node of the of communication line.

TERMINAL ASSIGNMENTS

■OUTPUT TERMINAL ASSIGNMENT

	6 N	С	7 V	0	8 V	1	9 V	2	10 V	'3
1 N	С	2 CO	M0	3 CO	M1	4 CO	M2	5 CO	МЗ	

NO.	ID	FUNCTION	NO.	ID	FUNCTION
1	NC	No connection	6	NC	No connection
2	COM0	Common 0	7	V0	Voltage output 0
3	COM1	Common 1	8	V1	Voltage output 1
4	COM2	Common 2	9	V2	Voltage output 2
5	СОМЗ	Common 3	10	V3	Voltage output 3

■ POWER SUPPLY, CC-LINK TERMINAL ASSIGNMENT

NO.	ID	FUNCTION, NOTES
1	DB	White
2	SLD	Shield
3	FG	FG
4	DA	Blue
5	DG	Yellow
6	U (+)	Power input (+)
7	V (-)	Power input (-)

INDICATOR LED

CTA	THE	INID	\sim \sim \sim	$r \sim r$	I FD
3 I A		11/11/1	IL . A	I UK	1 F17

DIMP	DUN	EDD	00*1		OTATIO*2
PWR		ERR	SD*1	RD	STATUS*2
ON	ON	BL	BL	ON	Communicates normally with occasional CRC errors due to noise interference.
ON	ON	BL	BL	ON	Communicates normally but the Baud Rate and/or Station Address switches failed.
					ERR LED blinks approximately in 0.5 seconds intervals.
ON	ON	BL	BL	OFF	
ON	ON	BL	OFF	ON	CRC error detected in the received data. Unable to respond.
ON	ON	BL	OFF	OFF	
ON	ON	OFF	BL	ON	Normal communication
ON	ON	OFF	BL	OFF	
ON	ON	OFF	OFF	ON	Unable to receive data addressed to the station.
ON	ON	OFF	OFF	OFF	
ON	OFF	BL	BL	ON	Polling response is made but CRC error is detected in received refresh data.
ON	OFF	BL	BL	OFF	
ON	OFF	BL	OFF	ON	CRC error detected in the data addressed to the station.
ON	OFF	BL	OFF	OFF	
ON	OFF	OFF	BL	ON	Link is not started.
ON	OFF	OFF	BL	OFF	
ON	OFF	OFF	OFF	ON	No data addressed to the station. Or unable to receive data addressed to the station
					due to noise interference. (Missing parts of the data sent from the master)
ON	OFF	OFF	OFF	OFF	Unable to receive data due to wire breakdown
ON	OFF	ON	OFF	ON/OFF	Faulty Baud Rate and/or Station Address setting
OFF	OFF	OFF	OFF	OFF	Power input removed or power supply failure.

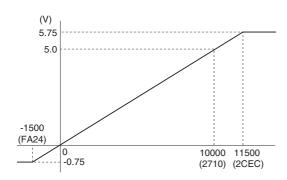
 $[\]mathsf{OFF} = \mathsf{OFF}, \, \mathsf{ON} = \mathsf{ON}, \, \mathsf{BL} = \mathsf{Blinking}$

^{*1.} SD LED which is blinking may appear to be ON with high baud rate especially when fewer modules are connected. *2. LED combinations indicated with "----" do not occur in normal operation unless LED failure or the like occurs.

DATA CONVERSION

■ OUTPUT RANGE AND DATA CONVERSION (FACTORY DEFAULT SETTING)

Digital output data is converted into analog representations of 0 – 100% proportional to each scaled range.


Overrange output is possible from -15 to +115% of the nominal range.

When the signal exceeds the limit, the data is fixed at -15% or +115%.

(approx. -11.5 V or +11.5 V when the output range is -10 - +10 V)

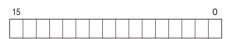
• Output Range 0 - 5V DC

Digital Value, Decimal	Degital Value, HEX	Output Value, Engineering Unit	Output Value, %
-1500	FA24	≤ -0.75V	-15%
0	0	0V	0%
10000	2710	5V	100%
11500	2CEC	≥ 5.75V	115%

DATA ALLOCATION

ANALOG OUTPUT

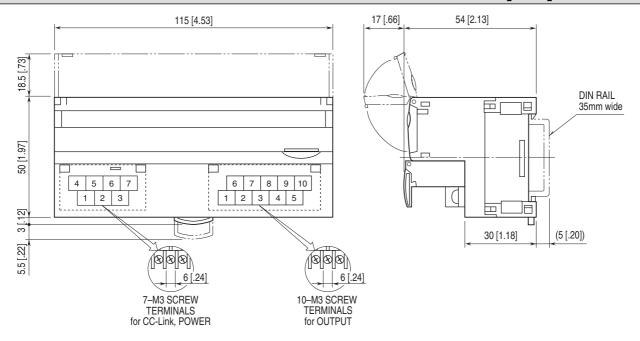
Interval-timed Response (X)


RWr n+0	Unused
+1	Unused
+2	Unused
+3	Unused

Refresh Data (Y)

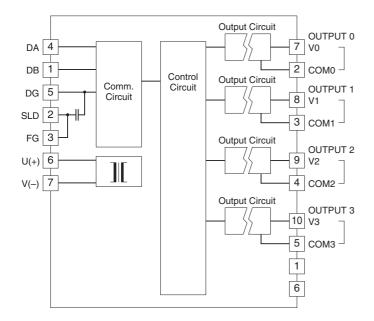
RWw n+0	Analog output 0	
+1	Analog output 1	
+2	Analog output 2	
+3	Analog output 3	

I/O DATA DESCRIPTIONS


■ ANALOG OUTPUT

16-bit binary data

Negative values represented in 2's complements


EXTERNAL DIMENSIONS & TERMINAL ASSIGNMENTS unit: mm [inch]

SCHEMATIC CIRCUITRY & CONNECTION DIAGRAM

Note: In order to improve EMC performance, bond the FG terminal to ground.

Caution: FG terminal is NOT a protective conductor terminal.

 \triangle

Specifications are subject to change without notice.