PLEASE FILL IN THIS SECTION	
Model	
Company	
Name	
P/O No.	

Specify the items you want to change. Default setting will be used if not specified.

DEFAULT shows values in case of nothing specified.

ITEM	SET VALUE	DEFAULT	COMMENTS
INPUT TYPE	- Open collector - Voltage pulse - Two-wire current pulse	Voltage pulse	Choose from the list to the left. The accuracy described in the data sheet may not be assured when the input waveform is not clear.
PULSE AMPLITUDE	$V \mathrm{p}-\mathrm{p}(\mathrm{mA} p-\mathrm{p})$	5 V p-p	Specify these values for the voltage pulse or the two-wire current pulse input. They are required to accurately understand the input waveform. The maximum voltage applicable across the input terminals is 50 V .
DC OFFSET	$V(\mathrm{~mA})$	2.5 V	
INPUT ZERO DUTY RATIO dz	\%	0.00\%	Specify the duty ratio for 0\% input within 1 to 99% (0% included). $0 \% \leq \mathrm{dz}<\mathrm{ds}$
INPUT SPAN DUTY RATIO ds	\%	100.00\%	Specify the duty ratio for 100% input within 1 to 99% (100% included). Min. 20% of the input range ($\mathrm{ds}-\mathrm{dz}$) required. $\mathrm{dz}<\mathrm{ds} \leq 100 \%$
ALARM MODE	- High alarm - Low alarm - No alarm	High alarm	Choose from the list to the left.
ALARM SETPOINT	\%	100.00\%	Specify within -15.00 to $+115.00 \%$ if High/Low alarm is selected.
ALARM DEADBAND	\%	1.00\%	Specify within 0.00 to 20.00% if High/Low alarm is selected.
ALARM ON DELAY time at start up	sec.	3 sec .	Specifiy the delay time for the alarm trip after the power is turned on, within 2.0 to 1000.0 sec . if High/Low alarm is selected.
NO INPUT DETECTING TIME	sec.	1 sec .	Specify within 0.1 to 100.0 sec. The transmitter forcibly provides 0% or 100% output depending on the input status if no input is detected for a preset time period.
PULSE LOGIC	$\begin{aligned} & \text { Non-inverted } \\ & \text { Inverted } \end{aligned}$	Non-inverted	Valid duty ratio Non-inverted: Hi level for voltage/current pulse OFF for open collector Inverted: Lo level for voltage/current pulse ON for open collector
MOVING AVERAGE CYCLES	cycles	4 cycles	Specifiy how many samples are to be used for moving average calculation, within 1 to 30 cycles. Discarded Hi samples + Discarded Lo samples < Moving average cycles
DISCARDED HI SAMPLES	samples	1 sample	Specify how many of the highest samples to be discarded from moving average calculation, within 0 to 10 samples.
DISCARDED LO SAMPLES	samples	1 sample	Specify how many of the lowest samples to be discarded from moving average calculation, within 0 to 10 samples.

INPUT (unit :)*1	OUTPUT (unit :	INPUT (unit :	$)^{* 1}$	OUTPUT (unit :)*2
X (01)		Y (01)	X (09)		Y (09)	
X (02)		Y (02)	X (10)		Y (10)	
X (03)		Y (03)	X (11)		Y (11)	
X (04)		Y (04)	X (12)		Y (12)	
$\mathrm{X}(05)$		Y (05)	X (13)		Y (13)	
$\mathrm{X}(06)$		Y (06)	X (14)		Y (14)	
X (07)		Y (07)	X (15)		Y (15)	
X (08)		Y (08)	X (16)		Y (16)	

*1. Clearly specify either '\%' (input data in \%) or 'duty ratio \%' (duty ratio in \%) as input data. *2. Output data in \% is acceptable.
EXAMPLE

$X(01)$	$0.00(\%)$	$Y(01)$	$4.00(\mathrm{~mA})$	$X(09)$	80.00	$Y(09)$	$17.58(\mathrm{~mA})$
$X(02)$	10.00	$Y(02)$	6.37	$X(10)$	90.00	$Y(10)$	18.81
$X(03)$	20.00	$Y(03)$	8.42	$X(11)$	100.00	$Y(11)$	20.00
$X(04)$	30.00	$Y(04)$	10.25	$X(12)$		$Y(12)$	
$X(05)$	40.00	$Y(05)$	11.92	$X(13)$		$Y(13)$	
$X(06)$	50.00	$Y(06)$	13.47	$X(14)$		$Y(14)$	
$X(07)$	60.00	$Y(07)$	14.92	$X(16)$		$Y(15)$	
$X(08)$	70.00	$Y(08)$	16.28		$Y(16)$		

■ INPUT PULSE LOGIC

INPUT TYPE	PULSE LOGIC	WAVEFORM
Voltage pulse Two-wire current pulse	Non-inverted	
$\left[\begin{array}{l} \mathrm{ON} \text { current (H) } \\ \mathrm{OFF} \text { current (L) } \end{array}\right]$	Inverted	
Open collector	Non-inverted	
	Inverted	

The pulse logic is applied to the bold lined section of the waveform.

■ Voltage pulse waveform

■ Two-wire current pulse waveform

