PLEASE FILL IN THIS SECTION	FACTORY USE ONLY	
Model	Job No.	Approved by (Sales office)
Company	Ser No.	Issued by (Sales office)
Name	Sales	Approved by (Factory)
P/O No.		$\begin{aligned} & \text { Set by } \\ & \text { (Factory) } \end{aligned}$
		Ser No.

Specify the items you want to change. Default setting will be used if not specified.
DEFAULT shows values in case of nothing specified.

SETTING

	PARAMETER	AVAILABLE VALUE	DEFAULT VALUE	SET VALUE	FACTORY INTERNAL CHECK
Input *3	A1:Open collector	$0-1.000 \mathrm{mHz}$ through 99.99 kHz	$0-9.999 \mathrm{kHz}$	Fill in with four digits for 100% input side. (Decimal point is not included.) Example: For 0 to 497 Hz , fill in " 997.0 ". 0 to \qquad Put check mark to the unit. kHz Hz mHz	\square Checked
	A2: Mechanical contact	$0-1.000 \mathrm{mHz}$ through 9.999 Hz	$0-9.999 \mathrm{~Hz}$		
	B1:Proximity sensor	$0-1.000 \mathrm{mHz}$ through 9.999 kHz	$0-9.999 \mathrm{kHz}$		
	B2:Voltage pulse	$0-1.000 \mathrm{mHz}$ through 99.99 kHz	$0-9.999 \mathrm{kHz}$		
	H:Two-wire current pulse	$0-1.000 \mathrm{mHz}$ through 99.99 Hz	$0-99.99 \mathrm{~Hz}$		
	Dividing factor *1	$1 / 1$ to $1 / 16$	1/1		\square Checked
	Damper *2	0-5 sec	0		\square Checked

${ }^{*} 1$: Non-uniform pulses and dividing factor
Non-corrected pulse wave output of positive displacement flowmeter such as oval gear type or roots (rotating lobe) type looks like the figure shown below. The analog signal converted from the pulse wave may fluctuate since the pulse pitches in one rotation of flowmeter are not equal.
In this example, in order to stabilize the analog signal, set dividing factor to $1 / 8$, then the unit reads only one pulse in one rotation and internally multiplies by 8 so that the original frequency is recovered. Note that response time is 0.5 sec . + one cycle of the divided pulse.

*2 : To provide a first order lag output.
*3 : To enter input frequency, refer to the table shown right side.
Example 1: For 0 to 1000 Hz , fill in '1.000', unit shall be ' kHz '. Example 2: For 0 to 0.1 Hz , fill in ' 100.0 ', unit shall be ' mHz '.

$10.00 \sim 99.99 \mathrm{kHz}$	
$1.000 \sim 9.999 \mathrm{kHz}$	
$100.0 \sim 999.9 \mathrm{~Hz}$	
$10.00 \sim 99.99 \mathrm{~Hz}$	
$1.000 \sim$	9.999 Hz
$100.0 \sim 999.9 \mathrm{mHz}$	
$10.00 \sim 99.99 \mathrm{mHz}$	
$1.000 \sim 9.999 \mathrm{mHz}$	

