ORDERING INFORMATION
Model : LSMT4

PLEASE FILL IN THIS SECTION	
Model	
Company	
Name	
P/O No.	

Fill in blank sections or mark with

INPUT RANGE SETTING

- CONFIGURATION

Single-phase/ 2-wire Single-phase/3-wire 3-phase/3-wire 3-phase/4-wire
Factory Default Setting: 3-phase/3-wire

- VT SETTING

For the use of a VT, select primary voltage by increments of 10 V within range of $50-400000 \mathrm{~V}$.

Primary voltage	V

Factory Default Setting; VT unused
For secondary voltage range, specify in integer with range indicated on the table below; this value is the input rated voltage.
Factory Default Setting; 110 V

CONFIGURATION	RANGE	
Single-phase/ 2-wire	Voltage between V1 and N	$50-277 \mathrm{~V}$
3-phase/ 3-wire	Line-to-line voltage	$50-480 \mathrm{~V}$
Single-phase/ 3-wire	Voltage between V1 and N	$50-277 \mathrm{~V}$
3-phase/ 4-wire	Phase voltage	

Secondary voltage (rated voltage)

- CT SETTING

For the use of a CT, select primary current in integer within range of $1-20000 \mathrm{~A}$. For secondary current, rated current is 1 A or 5 A depending on the model.
Factory Default Setting; CT unused

$$
\begin{array}{|l|r|}
\hline \text { Primary current } & \text { A } \\
\hline
\end{array}
$$

■ RATED INPUT POWER

\square Standard	\square No compensation

- When choosing "Standard"

Rated input power is calculated as following: A = VT secondary voltage \times CT secondary current (1 or 5) $\times \mathrm{a}$ ($\mathrm{a}=1$ for single phase/2-wire; 2 for single phase/3-wire or three phase/3-wire; 3 for three phase/4-wire)
Rated input power is the value rounded from A to the nearest hundred that is the result of an integer multiplied by 100 times CT secondary current.
Example:

CONFIGURATION	RANGE	RATED INPUT POWER
Single phase/ 2-wire	$110 \mathrm{~V} / 5 \mathrm{~A}$	500 W
	$220 \mathrm{~V} / 5 \mathrm{~A}$	1000 W
Single phase/ 3-wire	$110 \mathrm{~V} / 5 \mathrm{~A}$	1000 W
3 phase/ 3-wire	$110 \mathrm{~V} / 5 \mathrm{~A}$	1000 W
	$220 \mathrm{~V} / 5 \mathrm{~A}$	2000 W
3 phase/ 4-wire	$220 \mathrm{~V} / 5 \mathrm{~A}$	3500 W

- When choosing "No Compensation"

Rated input power value is calculated with the following formulas.
Single phase/ 2 -wire: Power $=$ Rated voltage \times Rated current
Single phase/ 3 -wire: Power $=$ Rated voltage \times Rated current $\times 2$
3-phase/ 3 -wire: Power $=$ Rated voltage \times Rated current $\times \sqrt{ } 3$
3-phase/ 4 -wire: Power= Rated voltage \times Rated current $\times 3$

OUTPUT SETTING

■ OUTPUT SIGNAL ASSIGNMENT

(To fill in only for nonstandard settings)
Select measurement item: I: current, V: voltage, W: power, VA: apparent power, var: reactive power, PF: power factor, Hz: frequency.
Phase voltage V1N, V2N, and V3N are also selectable for 3-phase/4-wire.
Enter "-", for unused channels.

- Single phase/ 2-wire

CH.	1	2	3	4	5	6	7	8	9	10
Standard	I1	-	-	V1N	-	-	W	var	PF	Hz
Your specification										

- Single phase/ 3-wire

CH.	1	2	3	4	5	6	7	8	9	10
Standard	I1	IN	I3	V1N	V3N	V31	W	var	PF	Hz
Your specification										

- 3 phase/ 3-wire, 3 phase/ 4-wire

CH.	1	2	3	4	5	6	7	8	9	10
Standard	I 1	I 2	I 3	V 12	V 23	V 31	W	var	PF	Hz
Your specification										

\square ANALOG LIMIT

\square With	Limit at -1% and $+101 \%$
\square Without (STD)	No limit (output -5 to $+105 \%$)

Caution: Do not specify analog limit settings in case of linearization table use, as output settings are performed with the table.

OUTPUT RANGE

- Voltage

Specify the 100% of voltage input range in integer, with 50 through 480 V for line to line voltage and 50 through 277 V for phase voltage.
0% is 0 V . (Factory setting: 150 V)

- Current, power, power factor, frequency

Specify input range in the following table.
For current and power, set input rating to $1(100 \%)$ and fill in the coefficient by which it is multiplied.
The input rating is the same as the specified on first clause of "rated input power" section.

INPUT SPECIFICATIONS		OUTPUT RANGE						TIDE (STD.: Without)
		OUTPUT 0\%			OUTPUT 100\%			
		COEFFICIENT	RANGE	STD.	COEFFICIENT	RANGE	STD.	
CURRENT	N/A		0-0.2	0		0.5-1.2	1	N/A
POWER	N/A		$-1.2-+0.2$	0		0.5-1.2	1	By negative cos.
APPARENT POWER	N/A		0-0.2	0		0.5-1.2	1	N/A
REACTIVE PWR.	$\square 0-$ LEAD		-0.2-0	0		-0.5--1.2	-1	N/A
	- 0 -LAG		0-0.2	0		0.5-1.2	1	N/A
	\square LEAD - LAG (STD)		-0.4--1.2	-1		0.4-1.2	1	\square With Without
	- LAG - LEAD		0-4-1.2	1		-0.4--1.2	-1	\square With Without
POWER FACTOR	- LEAD 0.5-1-LAG 0.5	STD: LEAD 0.5-1 - LAG 0.5						With Without
	- LAG 0.5-1-LEAD 0.5							
	- LEAD 0-1-LAG 0							
	- LAG 0-1-LEAD 0							
FREQUENCY	- $45-65$	STD: $45-65 \mathrm{~Hz}$						N/A
	-45-55							
	-55-65							

Correlation of reactive power for bidirectional current and power factor for bidirectional current are described in following figure.

■ OUTPUT EXAMPLES

- Power factor for bidirectional current

Range-50 to 50\%

- Energy pulse

Select energy from the following table according to primary power, and fill in the \square.
Setting values Wh and varh are common use. Output channel 11 is fixed to Wh and 12 to varh.
The primary power is calculated by the following formulas.
Single phase/ 2 -wire: Power = primary voltage \times primary current
Single phase/ 3 -wire: Power = primary voltage (phase voltage) \times primary current $\times 2$
3 -phase/ 3 -wire: Power $=$ primary voltage \times primary current $\times \sqrt{ } 3$
3 -phase/ 4 -wire: Power $=$ primary voltage (phase voltage) \times primary current $\times 3$

PRIMARY POWER (kVA)	USABLE PULSE UNIT (Wh OR varh / PULSE)			
<10	1 k	0.1 k	0.01 k	0.001 k
$10-100$	10 k	1 k	0.1 k	0.01 k
$100-1000$	100 k	10 k	1 k	0.1 k
$1000-10000$	1 M	100 k	10 k	1 k
$10000-100000$	10 M	1 M	100 k	10 k
≥ 100000	100 M	10 M	1 M	100 k
Your specification	\square	\square	\square	\square Standard

REACTIVE POWER SIGN SETTING

Specify the characteristic at bidirectional input when reactive power and power factor without bidirectional current. Refer to the following table in order to output power factor and reactive power when power factor is near 0 to specify. (IEC is compatible with firmware version 1.3 or later.)

\square Standard (IEC)	\square SPC

REACTIVE POWER SIGN	IEC	SPC
REACTIVE POWER		
POWER FACTOR		

