PLEASE FILL IN THIS SECTION
Model
Company
Name

P/O No.
Fill in blank sections or mark with $\boldsymbol{\imath}$ if necessary.
Standard settings will be used if not otherwise specified.

SOFTWARE SETTING

ITEM	SET VALUE	STANDARD	COMMENTS
INPUT TYPE	Open collector Mechanical contact Voltage pulse Two-wire current pulse	Open collector	Choose from the list to the left.
PULSE SENSING (voltage/two-wire current pulse input only)	Capacitor coupled DC coupled	DC coupled	Choose from the list to the left.
PULSE AMPLITUDE (voltage/two-wire current pulse input only)	$V \mathrm{p}-\mathrm{p}(\mathrm{mA} p-\mathrm{p})$	Must be specified	These values are required to accurately understand the input waveform, therefore, detecting level value will be factory customized. Pulse amplitude: - Voltage pulse: 0.1 - $100 \mathrm{Vp}-\mathrm{p}$ - Two-wire current pulse: $10-25 \mathrm{~mA}$ The maximum voltage applicable across the input terminals is 50 V .
DC OFFSET (voltage/two-wire current pulse input only)	$V(\mathrm{~mA})$	Must be specified	
INPUT ZERO FREQUENCY fz	Hz	0 Hz	Specify the frequency for 0\% input. $0 \mathrm{~Hz} \leq \mathrm{fz}<\mathrm{fs}$
INPUT SPAN FREQUENCY fs	Hz	1000 Hz	Specify the frequency for 100% input. Min. 10\% of the selected frequency range value required. $\mathrm{fz}<\mathrm{fs} \leq$ Max. value of the selected frequency range $\cdot 0-10 \mathrm{mHz}$ - $0-100 \mathrm{mHz}$ -0-1 Hz - $0-10 \mathrm{~Hz}$ - $0-100 \mathrm{~Hz}$ - $0-1 \mathrm{kHz}$ - $0-10 \mathrm{kHz}$ - 0-100kHz Noise filter factory setting depends on these values to be calculated with the following formula. fs $\leq 1 \mathrm{~Hz}$: Noise filter "High" $1 \mathrm{~Hz}<\mathrm{fs} \leq 1 \mathrm{kHz}$: Noise filter "Low" $1 \mathrm{kHz}<\mathrm{fs} \leq 100 \mathrm{kHz}$: Without noise filter
LOW-END CUTOUT	\%	$\begin{gathered} -15.00 \% \\ \text { (fs - fz). } \end{gathered}$	Choose within -15.00 to $+115.00 \%$ as percent of the input range The transmitter forcibly provides an output equivalent to 0 Hz input. If the 'fz' value is set to 0 Hz , any setting lower than 0 Hz is invalid.
ALARM MODE	High alarm No alarm Low alarm	High alarm	Choose from the list to the left.
ALARM SETPOINT	\%	100.00\%	Specify within -15.00 to $+115.00 \%$ if High/Low alarm is selected.
ALARM DEADBAND	\%	1.00\%	Specify within 0.00 to 20.00% if High/Low alarm is selected.
ALARM ON DELAY TIME	sec.	3.0 sec.	Specifiy the delay time for the alarm trip after the power is turned on, within 2.0 to 1000.0 sec . if High/Low alarm is selected.

ITEM	SET VALUE	STANDARD	COMMENTS
NON-UNIFORM PULSE COMPENSATION		1	Non-uniform pulse waveform is compensated to uniform one by multiplying and dividing the number of pulses (in order to suppress the output pulsation).

LINEARIZATION Fill in the table only when the linearization is required. Refer to the example below.

I/0 data in \% is acceptable.
EXAMPLE

$\mathrm{X}(01)$	$0.00(\mathrm{~Hz})$	$\mathrm{Y}(01)$	$4.00(\mathrm{~mA})$	$\mathrm{X}(09)$	$80.00(\mathrm{~Hz})$	$\mathrm{Y}(09)$	$17.58(\mathrm{~mA})$
$\mathrm{X}(02)$	10.00	$\mathrm{Y}(02)$	6.37	$\mathrm{X}(10)$	90.00	$\mathrm{Y}(10)$	18.81
$\mathrm{X}(03)$	20.00	$\mathrm{Y}(03)$	8.42	$\mathrm{X}(11)$	100.00	$\mathrm{Y}(11)$	20.00
$\mathrm{X}(04)$	30.00	$\mathrm{Y}(04)$	10.25	$\mathrm{X}(12)$		$\mathrm{Y}(12)$	
$\mathrm{X}(05)$	40.00	$\mathrm{Y}(05)$	11.92	$\mathrm{X}(13)$		$\mathrm{Y}(13)$	
$\mathrm{X}(06)$	50.00	$\mathrm{Y}(06)$	13.47	$\mathrm{X}(14)$		$\mathrm{Y}(14)$	
$\mathrm{X}(07)$	60.00	$\mathrm{Y}(07)$	14.92	$\mathrm{X}(15)$	$\mathrm{Y}(15)$		
$\mathrm{X}(08)$	70.00	$\mathrm{Y}(08)$	16.28	$\mathrm{X}(16)$		$\mathrm{Y}(16)$	

Note: Linearization setting is common for both outputs.
■ INPUT AMPLITUDE \& DC OFFSET (voltage pulse example)

