

Specify the items you want to change. Default setting will be used if not specified.

■ INPUT SETTING

ITEM	SET VALUE	DEFAULT VALUE	COMMENTS	FACTORY INTERNAL CHECK
Input wiring	Single-phase/2-wire Single-phase/3-wire 3-phase/3-wire	3 -phase/3-wire		\square
CT rating, primary		5	$1 \text { to } 20 \text { 000: Current (A) }$ Valid only for the sensor type CLSE-R5. Selected sensor's rating is automatically set for other types of sensors.	\square
CT sensor type	\square CLSE-R5 \square CLSE-05 \square CLSE-10 \square CLSE-20 \square CLSE-40 \square CLSE-60	CLSE-R5		\square
VT rating, primary		110	50 to 400000 : Voltage (V) If VT is not used, enter the same value for primary and secondary. This value is used for calcultion of rated power.	\square
VT rating, secondary		110	50 to 500 : Voltage (V) The secondary can be set up to 500 V . However, this does not mean the unit accepts 500 V for input. Do not use with the condition exceeding input rating written in the specification sheet of the unit.	\square
Low-end cutout, current		1.0	$0.0 \text { to } 99.9 \text { : (\%) }$ Rated current \times Specified percentage	\square
Frequency input	Voltage signal 50 Hz fixed 60 Hz fixed	Voltage signal		\square

■ DEMAND SETTING
\(\left.$$
\begin{array}{c|c|c|c|c}\hline \text { ITEM } & \text { SET VALUE } & \text { DEFAULT VALUE } & \text { COMMENTS } & \begin{array}{c}\text { FACTORY } \\
\text { INTERNAL } \\
\text { CHECK }\end{array}
$$

\hline \begin{array}{c}Average (demand)

current update interval\end{array} \& \& 30 \& 1 to 60: Internal timer (Unit: minutes)\end{array}\right] \square \square\)| \square |
| :---: |
| Average (demand)
 power update interval |

■ STYLE SETTING

ITEM	SET VALUE	DEFAULT VALUE	COMMENTS	FACTORY INTERNAL CHECK
Power factor (PF1 through PF3, PF) sign		0	0: Standard (IEC), Identical to the active energy $1:$ Special type 1 (IEEE), Positive in LAG, Negative in LEAD	\square
Reactive power $($ Q1 through Q3, Q) sign		0	0: Standard (IEC), Positive from PF $=1.0$ to 180° in LAG direction; Negative for the other direction $1:$ Special type 1 (inverts sign at outgoing), Positive in LAG, Negative in LEAD	\square

Note: '1,' '2,' '3' in expressions like Q1, Q2, Q3 indicate 'R,' 'S,' 'T' respectively

■ MEASURING MODE

ITEM	SET VALUE	DEFAULT VALUE	COMMENTS	FACTORY INTERNAL CHECK
Measuring mode	\square Standard measuring \square Simple measuring	Standard measuring	Votage and power facter are fixed at simple measuring.	\square
Power facter at simple measuring		1.0000	At simple measuring, VT's primary is applied for voltage.	\square

■SPECIFY WHEN "EXTERNAL INTERFACE 1: ANALOG OUTPUT" IS SELECTED.

ITEM	SET VALUE		DEFAULT VALUE	FACTORY INTERNAL CHECK
Measurement item		NULL	Specify the items by symbol from Table 1.	\square
Input 0%		0.00%	Specify from $-15.00-+140.00 \%$.	\square
Input 100%		100.00%	Specify from $-15.00-+140.00 \%$.	\square
Output 0% setting value		4 mA	Specify within the following range according to the output range. $0-20.0$ mA $/-5.0-+5.0 \mathrm{~V} /-10.0-+10.0 \mathrm{~V}$	\square
Output 100% setting value		20 mA	Specify within the following range according to the output range. $0-20.0 \mathrm{~mA} /-5.0-+5.0 \mathrm{~V} /-10.0-+10.0 \mathrm{~V}$	\square

Input as a percentage of the span shown in Table 1.
For Power $\mathrm{P}(\mathrm{Q}),-\mathrm{P}$ to $\mathrm{P}(-\mathrm{Q}$ to Q$)$ is 0 to 100%, and calculated with following formula.
Input value [\%] $=\left(\frac{\text { Input engineering value }}{\text { Power value }{ }^{(1)} \times 2}+0.5\right) \times 100$
(1) P: Active power $=$ VT rating primary \times CT rating primary $\times n$

Q: Reactive power $=$ VT rating primary \times CT rating primary $\times \mathrm{n}$
Single-phase/2-wire: $\mathrm{n}=1$, Single-phase/3-wire: $\mathrm{n}=2$, 3 -phase/3-wire: $\mathrm{n}=\sqrt{ } 3$

For Power $\mathrm{S}, 0$ to S is 0 to 100%, and calculated with following formula.
Input value [\%] $=\left(\frac{\text { Input engineering value }}{\text { Power value }}{ }^{(1)}\right) \times 100$
(1) S: Apparent power $=$ VT rating primary \times CT rating primary $\times n$

Single-phase/2-wire: $\mathrm{n}=1$, Single-phase/3-wire: $\mathrm{n}=2$, 3 -phase/3-wire: $\mathrm{n}=\sqrt{ } 3$
<Calculation Example>
3-phase/3-wire, VT 3300 V / 110 V, CT 250 A / 5A
Input engineering range $-1000-+1000 \mathrm{~kW}$
Input $0[\%]=\left(\frac{-1000 \mathrm{~kW}}{1429 \times 2}+0.5\right) \times 100=15.01[\%]$
Input $100[\%]=\left(\frac{1000 \mathrm{~kW}}{1429 \times 2}+0.5\right) \times 100=84.99[\%]$

Limit value (output range) of output signal is as following.
$0-20 \mathrm{~mA}$ range: $0-23 \mathrm{~mA}$
$-5 \mathrm{~V}-+5 \mathrm{~V}$ range: $-5.75 \mathrm{~V}-+5.75 \mathrm{~V}$
$-10 \mathrm{~V}-+10 \mathrm{~V}$ range $:-11.5 \mathrm{~V}-+11.5 \mathrm{~V}$
■SPECIFY WHEN "EXTERNAL INTERFACE 2: PULSE / ALARM OUTPUT" IS SELECTED.

ITEM	SET VALUE	DEFAULT VALUE	COMMENTS	FACTORY INTERNAL CHECK
Function	Corge count pulse Operation mode \square Energy count pulse	\square		
\square Normal open	Normal open		\square	
Normal close				

Specify when "energy count pulse" is selected

ITEM	SET VALUE	DEFAULT VALUE	COMMENTS	FACTORY INTERNAL CHECK
Energy to measure		EP	Specify the items by symbol from Table 2.	\square
Energy per 1 pulse		1.0	Specify fron $0.1-1 ., 000 \mathrm{kWh} / \mathrm{lvar} / \mathrm{kVAh}$.	\square
Pulse width (msec.)		100	Specify from 100-2000 msec.	\square

Specify when "alarm" is selected

ITEM	SET VALUE	DEFAULT VALUE	COMMENTS	FACTORY INTERNAL CHECK
Power ON delay time (sec.)		0	Specify from 0-999.	\square
Latching	Disable Enable	Disable	Power OFF or OFF until canceled by CFG.	\square
Target item		-	Specify the items by symbol from Table 3.	\square
Upper limit value		0	Specify from upper limit range in Table 3.	\square
Lower lomit value		0	Specify from lower limit range in Table 3.	\square
Deadband (\%)		0.0	Specify from 0-99.9\%.	\square
Alarm ON delay time (sec.)		0	Specify from 0-999 sec.	\square

■SPECIFY WHEN "EXTERNAL INTERFACE 3: MODBUS COMMUNICATION" IS SELECTED.

ITEM	SET VALUE	DEFAULT VALUE	COMMENTS	FACTORY INTERNAL CHECK
Node address		1	1-247	\square
Baud rate	$\square 1200 \mathrm{bps}$ $\square 2400 \mathrm{bps}$ $\square 4800 \mathrm{bps}$ $\square 9600 \mathrm{bps}$ $\square 19200 \mathrm{bps}$ $\square 38400 \mathrm{bps}$	38400 bps		\square
Parity bit	None Odd Even	Odd		\square
Stop bit	1 bit 2 bits	1 bit		\square

Table 1 Analog Output Signal Allocation

TERM	DESCRIPTION
CT1 (rated current)	Rated current when CLSE-R5 is used as a CT secondary is the value set for primary side. Other than that, the rated current is rated value of the sensor used.
VT1 (rated voltage)	Rated voltage is the setting value of VT primary.
P (rated power)	Rated power is calculated by following formula with using VT1. P = CT1 \times VT1 $\times \mathrm{n}$ $\mathrm{n}=$ single-phase/2-wire: 1, single-phase/3-wire: 2,3 -phase/3-wire: $\sqrt{ } 3$

SYMBOL	DESCRIPTION	RANGE (0-100\%)	SINGLE-PHASE 2-WIRE	SINGLE-PHASE 3-WIRE	3-PHASE 3-WIRE
NULL	Not assigned		\checkmark	\checkmark	\checkmark
I	Current	0-CT1	\checkmark	\checkmark	\checkmark
U	Voltage	0 - VT1	\checkmark	\checkmark	\checkmark
P	Active power	-P - P	\checkmark	\checkmark	\checkmark
Q	Reactive power	-P - P	\checkmark	\checkmark	\checkmark
S	Apparent power	-P - P	\checkmark	\checkmark	\checkmark
PF	Power factor	-1.0000-1.0000	\checkmark	\checkmark	\checkmark
F	Frequency	45.00-65.00	\checkmark	\checkmark	\checkmark
I1	Current, Line 1	0 - CT1	\checkmark	\checkmark	\checkmark
I2	Current, Line 2	0 - CT1			\checkmark
I3	Current, Line 3	0 - CT1		\checkmark	\checkmark
IN	Neutral current	0 - CT1		\checkmark	
U12	Delta voltage, 1-2	0 - VT1			\checkmark
U23	Delta voltage, 2-3	0 - VT1			\checkmark
U31	Delta voltage, 3-1	0 - VT1			\checkmark
U1N	Phase voltage, Phase 1	0 - VT1	\checkmark	\checkmark	
U3N	Phase voltage, Phase 3	0 - VT1		\checkmark	
P1	Active power, Phase 1	-(VT1 × CT1) - (VT1 × CT1)	\checkmark	\checkmark	
P3	Active power, Phase 3	-(VT1 $\times \mathrm{CT} 1)-(\mathrm{VT} 1 \times \mathrm{CT} 1)$		\checkmark	
Q1	Reactive power, Phase 1	-(VT1 $\times \mathrm{CT} 1)-(\mathrm{VT} 1 \times \mathrm{CT} 1)$	\checkmark	\checkmark	
Q3	Reactive power, Phase 3	-(VT1 $\times \mathrm{CT} 1)-(\mathrm{VT} 1 \times \mathrm{CT} 1)$		\checkmark	
S1	Apparent power, Phase 1	-(VT1 × CT1) - (VT1 × CT1)	\checkmark	\checkmark	
S3	Apparent power, Phase 3	-(VT1 × CT1) - (VT1 × CT1)		\checkmark	
PF1	Power factor, Phase 1	-1.0000-1.0000	\checkmark	\checkmark	
PF3	Power factor, Phase 3	-1.0000-1.0000		\checkmark	
THDI1	Current total harmonic distortion, Line 1	0.0-100.0	\checkmark	\checkmark	\checkmark
THDI2	Current total harmonic distortion, Line 2	0.0-100.0			\checkmark
THDI3	Current total harmonic distortion, Line $3 \% / 10$	0.0-100.0		\checkmark	\checkmark
THDIN	Neutral current total harmonic distortion	0.0-100.0		\checkmark	
THDU12	Delta voltage total harmonic distortion, 1 - 2	0.0-100.0			\checkmark
THDU23	Delta voltage total harmonic distortion, $2-3 \% / 10$	0.0-100.0			\checkmark
THDU31	Delta voltage total harmonic distortion, 3-1	0.0-100.0			\checkmark
THDU1N	Phase voltage total harmonic distortion, Phase 1	0.0-100.0	\checkmark	\checkmark	
THDU3N	Phase voltage total harmonic distortion, Phase $3 \% /$	0.0-100.0		\checkmark	

SYMBOL	DESCRIPTION	RANGE (0-100\%)	SINGLE-PHASE 2-WIRE	SINGLE-PHASE 3-WIRE	3-PHASE 3-WIRE
T-Q	Reactive power for bidirectional current		\checkmark	\checkmark	\checkmark
T-PF	Power factor for bidirectional current		\checkmark	\checkmark	\checkmark

Table 2 Selectable Energy Count Pulse

SYMBOL	DESCRIPTION
EP	Active energy, incoming
EQ	Reactive energy, LAG
ES	Apparent energy
EP-	Active energy, outgoing
EQ-	Reactive energy, LEAD
EQ+LAG	Reactive energy, incoming, LAG
EQ+LEAD	Reactive energy, incoming, LEAD
EQ-LAG	Reactive energy, outgoing, LAG
EQ-LEAD	Reactive energy, outgoing, LEAD
EQ+P	Reactive energy, incoming
EQ-P	Reactive energy, outgoing
EQA	Reactive energy, (incoming + outgoing) kvarh

Table 3 Alarm Output Settings

SYMBOL	DESCRIPTION	LOWER LIMIT	UPPER LIMIT	SINGLE-PHASE 2-WIRE	SINGLE-PHASE 3-WIRE	3-PHASE 3-WIRE
I1-3	1-3-wire current	0.000 A	20000.000 A	\checkmark	\checkmark	\checkmark
IN	Neutral current	0.000 A	20000.000 A		\checkmark	
U12-31	Dela voltage 1-2-3-1	0.00 V	400000.00 V			\checkmark
U1N-3N	Phase voltage, phase 1-3	0.00 V	400000.00 V	\checkmark	\checkmark	
P	Active power	-2000 000000 W	2000000000 W	\checkmark	\checkmark	\checkmark
Q	Reactive power	-2000 000000 var	2000000000 var	\checkmark	\checkmark	\checkmark
S	Apparent power	0	2000000000 VA	\checkmark	\checkmark	\checkmark
PF	Power factor	-1.0000	1.0000	\checkmark	\checkmark	\checkmark
F	Frequency	45.00 Hz	65.00 Hz	\checkmark	\checkmark	\checkmark
I1-3 AVG	Current average, Line 1-3	0.000 A	20000.000 A	\checkmark	\checkmark	\checkmark
IN AVG	Neutral current AVG	0.000 A	20000.000 A		\checkmark	
P AVG	Active power AVG	-2000 000000 W	2000000000 W	\checkmark	\checkmark	\checkmark
Q AVG	Reactive power AVG	-2000 000000 var	2000000000 var	\checkmark	\checkmark	\checkmark
S AVG	Apparent power AVG	0	2000000000 VA	\checkmark	\checkmark	\checkmark
THD I1-3	Current total harmonic distortion, Line 1-3	0.0 \%	999.9 \%	\checkmark	\checkmark	\checkmark
THD IN	Neutral current total harmonic distortion	0.0 \%	999.9 \%		\checkmark	
THD U12-31	Delta voltage total harmonic distortion, 1-2-3-1	0.0 \%	999.9 \%			\checkmark
THD U1N-3N	Phase voltage total harmonic distortion, Phase 1-3	0.0 \%	999.9 \%	\checkmark	\checkmark	

