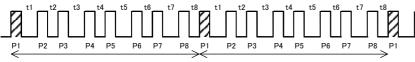
**ORDERING INFORMATION** 

MODEL: KPAU

| PLEASE FILL IN THIS SECTION | FACTORY USE ONLY |                               |
|-----------------------------|------------------|-------------------------------|
|                             |                  |                               |
| Model                       | Job No.          | Approved by<br>(Sales office) |
| Company                     | Ser No.          | Issued by<br>(Sales office)   |
| Name                        | Sales            | Approved by<br>(Factory)      |
| P/O No.                     |                  | Set by<br>(Factory)           |
|                             |                  | Ser No.                       |

## Specify the items you want to change. Default setting will be used if not specified.

DEFAULT shows values in case of nothing specified.


## ■ SETTING

|             | PARAMETER                | AVAILABLE VALUE                 | DEFAULT<br>VALUE | SET VALUE                                                                                                                                                                                         | FACTORY<br>INTERNAL<br>CHECK |
|-------------|--------------------------|---------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Input<br>*3 | A1:Open collector        | 0 - 1.000 mHz through 99.99 kHz | 0 – 9.999 kHz    | Fill in with four digits for 100 % input side.<br>(Decimal point is not included.)<br>Example: For 0 to 497 Hz, fill in "497.0".<br>0 to<br>Put check mark to the unit.<br>□ kHz<br>□ Hz<br>□ mHz | Checked                      |
|             | A2:Mechanical contact    | 0 - 1.000 mHz through 9.999 Hz  | 0 - 9.999 Hz     |                                                                                                                                                                                                   |                              |
|             | B1:Proximity sensor      | 0 - 1.000 mHz through 9.999 kHz | 0 – 9.999 kHz    |                                                                                                                                                                                                   |                              |
|             | B2:Voltage pulse         | 0 - 1.000 mHz through 99.99 kHz | 0 – 9.999 kHz    |                                                                                                                                                                                                   |                              |
|             | H:Two-wire current pulse | 0 - 1.000 mHz through 99.99 Hz  | 0 - 99.99 Hz     |                                                                                                                                                                                                   |                              |
|             | Dividing factor *1       | 1/1 to 1/16                     | 1/1              |                                                                                                                                                                                                   | Checked                      |
|             | Damper *2                | 0 - 5 sec                       | 0                |                                                                                                                                                                                                   | Checked                      |

 $^{*1}$  : Non-uniform pulses and dividing factor

Non-corrected pulse wave output of positive displacement flowmeter such as oval gear type or roots (rotating lobe) type looks like the figure shown below. The analog signal converted from the pulse wave may fluctuate since the pulse pitches in one rotation of flowmeter are not equal.

In this example, in order to stabilize the analog signal, set dividing factor to 1/8, then the unit reads only one pulse in one rotation and internally multiplies by 8 so that the original frequency is recovered. Note that response time is 0.5 sec. + one cycle of the divided pulse.



One rotation of flowmeter(T1)

One rotation of flowmeter(T1)

\*2: To provide a first order lag output.

\*3 : To enter input frequency, refer to the table shown right side.

Example 1: For 0 to 1000 Hz, fill in '1.000', unit shall be 'kHz'. Example 2: For 0 to 0.1 Hz, fill in '100.0', unit shall be 'mHz'.

| $10.00 \sim$ | 99.99 kHz |
|--------------|-----------|
| $1.000 \sim$ | 9.999 kHz |
| $100.0 \sim$ | 999.9 Hz  |
| $10.00 \sim$ | 99.99 Hz  |
| $1.000 \sim$ | 9.999 Hz  |
| $100.0 \sim$ | 999.9 mHz |
| $10.00 \sim$ | 99.99 mHz |
| $1.000 \sim$ | 9.999 mHz |
|              |           |