PLEASE FILL IN THIS SECTION
Model
Company
Name
P/O No.

	呈
Job No.	Approved by (Sales office)
Ser No.	Issued by (Sales office)
Sales	Approved by (Factory)
	$\begin{aligned} & \text { Set by } \\ & \text { (Factory) } \end{aligned}$

Specify the items you want to change. Default setting will be used if not specified.

Ser No.

DEFAULT shows values in case of nothing specified.

PARAMETER BLOCK	NAME	UNIT	AVAILABLE VALUE	EXPLANATIONS	DEFAULT VALUE	SET VALUE	Factory Internal check
1	ST1	Engineering unit *1	$\begin{array}{\|l} -5 \text { to }+105 \% \\ \text { FS } \\ \hline \end{array}$	Alarm setpoint value SET1	1200		\square Checked
	ST2	Engineering unit *1	$\begin{aligned} & -5 \text { to }+105 \% \\ & \text { FS } \end{aligned}$	Alarm setpoint value SET2	0		\square Checked
2	HYS1	Deviative engineering unit *1	0 to 102% FS	Deadband (hysteresis) for SET1	1		\square Checked
	HYS2	Deviative engineering unit *1	0 to 102% FS	Deadband (hysteresis) for SET2	1		\square Checked
	P-n2	N/A	0 to 8,12 to 14	Input type	3		\square Checked
	P-SL	Engineering unit*1	-1999 to 9999	Scaling, lower range	0		\square Checked
	P-SU	Engineering unit *1	-1999 to 9999	Scaling, upper range	1200		\square Checked
	P-dp	N/A	0 to 1	Decimal point position *3	0		\square Checked
	P-A1	N/A	0 to 8	Alarm mode for SET1 See Table 3.	1		\square Checked
	P-A2	N/A	0 to 8	Alarm mode for SET2 See Table 3.	2		\square Checked
	bUrn	N/A	H/L/norm	Burnout protection (upscale or downscale)	H		\square Checked
	P-F	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	Temperature unit	${ }^{\circ} \mathrm{C}$		\square Checked
	P-d1	Seconds	1 to 999	Switching delay timer for SET1	1		\square Checked
	$\mathrm{P}-\mathrm{d} 2$	Seconds	1 to 999	Switching delay timer for SET2	1		\square Checked
3	P-dF	Seconds	5.0 to $900.0{ }^{* 2}$	Time constant for the input filter	5.0		\square Checked
	CJM	ON/OFF	ON/OFF	Cold junction compensation	ON		\square Checked
	P-d0	Seconds	0 to 20	Power ON delay time	0		\square Checked

*1 Parameters set with "Engineering unit"or"Deviative engineering unit"shift according to changes in P-SL or P-SU setting.
*2 Be sure to set at the minimum of 5.0 or a larger value thougt the unit accepts one smaller than 5.0.
*3 0 for XXXX (no decimal point), 1 for XXX.X (one-place decimal).
Table 1 INPUT TYPE v.s. PARAMETER CODE NO.

Table 1 INPUT TYPE v.s. PARAMETER CODE NO.		
INPUT TYPE	SENSOR TYPE	PARAMETER CODE NO. (P-n2)
	JPt 100(JIS'89)	0
	Pt 100(JIS'97,IEC)	1
	$\mathrm{J}(\mathrm{IC})$	2
	$\mathrm{~K}(\mathrm{CA})$	3
	R	4
	$\mathrm{~B}(\mathrm{RH})$	5
	S	6
	$\mathrm{~T}(\mathrm{CC})$	7
	E (CRC)	8
	N	12
	P (Platinel II $)$	13
	$\mathrm{C}($ WRe 5-26)	14

Table 2 INPUT RANGE

SENSOR TYPE	RANGE ${ }^{\circ} \mathrm{C}$	RANGE ${ }^{\circ} \mathrm{F}$	DECIMAL ${ }^{\circ} \mathrm{C}$	DECIMAL ${ }^{\circ} \mathrm{F}$
RTD Pt 100 (JIS'97,IEC)				
Pt 100	0 to 150	32 to 302	Y	Y
	0 to 300	32 to 572	Y	Y
	0 to 500	32 to 932	Y	Y
	0 to 600	32 to 1112	Y	N
	-50 to 100	-58 to 212	Y	Y
	-100 to 200	-148 to 392	Y	Y
	-150 to 600	-238 to 1112	Y	N
	-150 to 850	-238 to 1562	N	N
RTD JPt 100(JIS'89)				
JPt 100	0 to 150	32 to 302	Y	Y
	0 to 300	32 to 572	Y	Y
	0 to 500	32 to 932	Y	Y
	0 to 600	32 to 1112	Y	N
	-50 to 100	-58 to 212	Y	Y
	-100 to 200	-148 to 392	Y	Y
	-150 to 600	-238 to 1112	Y	N
Thermocouple				
J(IC)	0 to 400	32 to 752	Y	Y
	0 to 800	32 to 1472	Y	N
K(CA)	0 to 400	32 to 752	Y	Y
	0 to 800	32 to 1472	Y	N
	0 to 1200	32 to 2192	N	N
R	0 to 1600	32 to 2912	N	N
B(RH)	0 to 1800	32 to 3272	N	N
S	0 to 1600	32 to 2912	N	N
T(CC)	-199 to 200	-328 to 392	Y	N
	-150 to 400	-238 to 752	Y	N
E(CRC)	0 to 800	32 to 1472	Y	N
	-199 to 800	-328 to 1472	Y	N
N	0 to 1300	32 to 2372	N	N
P (Platinel II)	0 to 1300	32 to 2372	N	N
C(WRe 5-26)	0 to 2300	32 to 4172	N	N

Table 3 ALARM MODE v.s. PARAMETER CODE NO.

PARAMETER CODE (P-A1) (P-A2)	ALARM MODES			
	TRIP OPERATION	SET VALUE	LATCHING HOLD*1	RELAY \& LED BEHAVIOR IN TRIPPED CONDITIONS
0	No alarm	-	-	-
1	High	Absolute value	Without	LED ON Coil energized
2	Low	Absolute value	Without	LED ON Coil energized
3	High	Absolute value	With	LED ON Coil energized
4	Low	Absolute value	With	LED ON Coil energized
5	High	Absolute value	Without	LED ON Coil de-energized
6	Low	Absolute value	Without	LED ON Coil de-energized
7	High	Absolute value	With	LED ON Coil de-energized
8	Low	Absolute value	With	LED ON Coil de-energized

*1 Without latching hold function, the unit is tripped upon starting operation (e.g.at $25^{\circ} \mathrm{C}$) when the unit is set to Low alarm (e.g. $100^{\circ} \mathrm{C}$). With the function, the unit is NOT tripped until the temperature goes once above and then below the setpoint $\left(100^{\circ} \mathrm{C}\right)$.

