スーパー *M・UNIT* シリーズ

カラー LCD 表示形、NestBus 通信機能付

ワンループコントローラ

ABH2

形式

ご使用いただく前に

このたびは、弊社の製品をお買い上げいただき誠にあ りがとうございます。本器をご使用いただく前に、下記 事項をご確認下さい。

- ・本器は一般産業用です。安全機器、事故防止システム、 生命維持、環境保全など、より高い安全性が要求され る用途、また車両制御や燃焼制御機器など、より高い 信頼性が要求される用途には、必ずしも万全の機能を 持つものではありません。
- ・安全にご使用いただくために、機器の設置や接続は、 電気的知識のある技術者が行って下さい。

■梱包内容を確認して下さい

- ・ワンループコントローラ.....1台
- ·取付金具1 組
- ・防水パッキン......1個
- ・プラグ変換アダプタ1個
 本体ジャックとコンフィギュレータ接続ケーブルのプ
 ラグサイズが異なるため使用します。

■形式を確認して下さい

お手元の製品がご注文された形式かどうか、スペック 表示で形式と仕様を確認して下さい。

■取扱説明書の記載内容について

本取扱説明書は本器の取扱い方法、外部結線および簡 単な保守方法について記載したものです。詳細は、取扱 説明書(詳細編)(NM-6366-B)をご参照下さい。

本器の設定に関しては、計器ブロックリスト (NM-6461-B) および計器ブロック応用マニュアル (NM-6461-C) をご覧下さい。

弊社のホームページよりダウンロードが可能です。

ご注意事項

●供給電源

- ・許容電圧範囲、電源周波数、消費電力
 スペック表示で定格電圧をご確認下さい。
 交流電源:定格電圧 100 ~ 240 VAC の場合
 85 ~ 264 V AC、50 / 60 Hz、
 100 V AC のとき約 9.0 VA
 - 240 V AC のとき約 13.0 VA
 - 直流電源:定格電圧 24 V DC の場合
 - 24 V DC ± 10 %、250 mA 以下
- ●取扱いについて
- ・本体の取外または取付を行う場合は、危険防止のため 必ず、電源および入出力信号を遮断して下さい。

●設置について

- ・屋内でご使用下さい。
- ・塵埃、金属粉などの多いところでは、防塵設計のきょ う体に収納し、放熱対策を施して下さい。
- ・振動、衝撃は故障の原因となることがあるため極力避けて下さい。
- ・周囲温度が -5 ~ +55℃を超えるような場所、周囲湿度 が 30 ~ 90 % RH を超えるような場所や結露するよう な場所でのご使用は、寿命・動作に影響しますので避 けて下さい。
- ・配線などで本体の通風口を塞がぬようご注意下さい。
- ●配線について
- ・配線は、ノイズ発生源(リレー駆動線、高周波ライン など)の近くに設置しないで下さい。
- ・ノイズが重畳している配線と共に結束したり、同一ダ クト内に収納することは避けて下さい。
- ●液晶表示について
- 液晶表示は直射日光下では見にくい場合があります。
 遮光するなどの対策を行って下さい。
- 液晶バックライトの寿命は約 50,000 時間です。バックライトは、弊社での交換になります。
- ・液晶画面には異常点(輝点、黒点、ドット欠け)が数 点程度、発生することがあります。ご容赦下さい。

●その他

- ・本器は電源投入と同時に動作しますが、すべての性能
 を満足するには10分の通電が必要です。
- ・安全のため、制御出力には外部インタロック回路を設 けて下さい。
- ・UPS による電源のバックアップや、ABF3 等バック アップユニットの使用をお勧めします。

各部の名称

取付方法

■取付寸法図(単位:mm)

■パネルカット寸法

●単体取付の場合(保護等級IP65対応)

■取付時の注意

・保護等級

IP65の保護等級は本器単体をパネルに取付けたときの、パネル前面に対する保護構造です。

- 取付け完了後、取付部の防水を確認して下さい。
- 1 台取付のみ対応します。複数台の多連取付では対応 できません。

・取付方向

垂直なパネルに操作ボタンが下辺になるように取付け て下さい。

他の方向の取付は、内部温度の上昇により寿命や性能 の低下の原因となることがあります。

- ・盤内側
- 通風スペースを十分に確保して下さい。

ヒータ、トランス、抵抗器などの発熱量の多い機器の 真上には取付けないで下さい。

保守などのために、上下左右背面に 30 mm 以上のスペースを設けて下さい。

■本体の取付

①取付金具を取外します。

- ②端子カバーの幅が本体より広いため、一旦端子カバー を取外し、先に端子カバーをパネルの取付穴に通した 後に、本体をパネルの取付穴に通します。
- ③パネル前面部を保護等級 IP65 対応とするためには、 本体に付属の防水パッキンを取付けて下さい。
- ④取付金具のフックをケース上下面にある穴に引っか け、固定されるまで取付金具のねじを締付けます。

取付板厚: 0.5~10

■端子カバーの取外方法

下図のようにマイナスドライバを背面の穴に入れ、矢印 の方向に引き、端子カバーを取外します。

■端子台の取外方法

- ・本器の端子台は着脱可能な2ピース構造となっており、
 上下の端子台着脱用ねじを均等に緩めることにより、
 端子台を取外すことが可能です。
- ・端子台を取外す場合は、危険防止のため必ず電源、入 出力通信信号、リレー出力等の通電を遮断して下さい。
- ・端子台には、それぞれ識別キーが付いており、適合す る端子台ソケットにのみ取付可能です。

接 続

各端子の接続は端子接続図もしくは端子カバーの結線表示を参考にして行って下さい。

外形寸法図 (単位:mm)

端子接続図

- ※1、より対線の伝送ラインが終端の場合は(=渡り配線がない場合)、端子12、13間を配線 などで短絡して下さい。ユニットが伝送ラインの途中に配線されているときは、端子 12、13間は配線しないで下さい。
- 注)渡り配線は11、12、14端子を使って下さい。

■入力タイプによる端子台接続

注) 直流電流入力時は必ず VLとI端子を短絡してご使用下さい。

表示部(前面パネル)の機能

① TAG No. 表示

② PV 表示: 白色 (バーグラフは緑色)

③偏差表示バーグラフメータ: ±2%以内:緑色、±10%以内:黄色、±25%以内:橙色、範囲外:赤色

④ SP 表示: 白色 (バーグラフは青色)

- ⑤ MV 表示: 白色 (バーグラフは黄色)
- ⑥ FN 表示:ユーザーが任意に選択できる内部アナログ信号を表示。
- ⑦赤外線通信ポート(コンフィギュレータ通信が赤外線通信のとき):ビルダーソフト(形式:SFEW3)が動作する パソコンと通信しループ変更、設定変更を行います。
- ⑧ MVの自動/手動切替ボタン:押す度に制御モードを自動(AUT)と手動(MAN)交互に切替
- ⑨ SP のカスケード/ローカル切替ボタン:押す度に制御モードをカスケード(C)とローカル(L)交互に切替
- ⑩表示ループ切替ボタン:押す度に表示ループを1次ループと2次ループ交互に切替(2ループ表示画面では操作ループを切替)
- ① UP・DOWN ボタン:制御モードが自動でローカルのとき SP 値を UP / DOWN
- 制御モードが手動のとき MV 値を UP / DOWN
- チューニング画面のときパラメータを UP / DOWN
- ¹² PV 警報設定範囲バー: PV 上下限警報範囲を表示
- ⁽³⁾ MV 出力制限範囲バー: MV 出力制限範囲を表示
- ⑭ Display ボタン: FN 表示エリアが、以下の表示に切替わります。

非表示 \rightarrow FN1 \rightarrow FN2 \rightarrow FN3 \rightarrow FN4 (\rightarrow PV \rightarrow SP \rightarrow MV) \neg ()はバー

 はバーグラフ表示時 未登録の FN はスキップされます。

長押し(1秒以上)すると画面表示モードが切替わります。

⑮インジケータ表示

項目	表示内容
AUT / MAN	自動時: AUT(緑色)、手動時: MAN(赤色)、オートチューニング時: AUT(青点滅)
C / L	カスケード時: C (青色)、ローカル時: L (黄色)
$AL1 \sim AL4$	ユーザー設定表示ランプ(シーケンスブロックを用いて制御)
	表示文字内容設定可能(半角4文字)
	点灯時:赤色、消灯時:グレー
CD.N.	カード番号表示 通常時: グレー、プログラミングモード時: 青色
RUN	正常時: 緑色、異常時: 橙色、停止時: グレー、メモリ破損時: 赤色

⑯ コンフィギュレータ設定用ジャック(コンフィギュレータ通信が赤外線通信のとき)

ビルダソフト(形式:SFEW3)が動作するパソコンと通信し、ループ変更、設定変更を行います。

*1、2 ループ目を登録していない場合は表示されません。 *2、ユーザーが任意に選択できる内部アナログ信号です (表示登録がされていない場合はスキップされます)。

本体準備

■ID と CARD No. の入力

初回の電源投入時のみ、コンフィギュレータ通信で用 いる ID 番号と、NestBus 通信のノード番号である CD No. 入力画面が表示されます。

まず、ID 番号を入力します。↓、↑ボタンで値を設 定し、Display ボタンで決定して下さい。

ID 番号はビルダーソフト(形式:SFEW3)にて設定 データの通信時に個体の識別に用います。システム内で コンフィギュレータ通信機能を持つ他の機器と異なる番 号を「0000」~「9999」の間で設定して下さい。

続いて、CD No. を入力します。↓、↑ボタンで値を 設定し、Display ボタンで決定して下さい。

CD No. は NestBus 通信のノード番号の設定です。接 続する NestBus 上のノードアドレスを「0」~「F」に て設定して下さい。

NestBus に接続せずに単体で用いる場合は出荷時設定の「0」のままの設定で結構です。

これらの設定は、チューニング画面から変更・確認す ることができます。

■配 線

●M3 ねじ端子

締付トルク: 0.5 N·m

●圧着端子

圧着端子は、下図の寸法範囲のものを使用して下さい。 また、Y 形端子を使用される場合も適用寸法は下図に準 じます。

・ 推奨圧着端子: R 1.25-3(日本圧着端子製造、ニチフ) (スリーブ付圧着端子は使用不可)

・適用電線: $0.75 \sim 1.25 \text{ mm}^2$

設定

●出荷時の設定

あらかじめ、システム共通テーブル、ABH2 フィール ド端子 (F63)、基本形 PID、指示計、シーケンサおよび システム内部スイッチが登録出荷されます。

■ループ1

基本形 PID が登録してあります。

測定入力(PV)を PID ブロックに入力し、PID ブロックの MV 出力を外部出力に接続しています。

アナログ入力(Ai)を PID ブロック CAS 接続端子に接続しています。

設定形式 0(LOCAL)ですので SV 値はローカルでのみ 設定できます。

設定形式を1(CASCADE / LOCAL)に変更するとAi 値によりカスケード制御が可能です。

PV 入力の上下限警報を前面 LCD インジケータ AL1、 AL2 にランプ出力します。

■ループ2

指示計が登録してあります。

アナログ入力 (Ai) を指示計ブロックに入力しています。 Ai 入力の上下限警報を前面 LCD インジケータ AL3、 AL4 にランプ出力します。

※1、工場出荷時の設定です。

注) ループ変更などは、ビルダーソフト(形式:SFEW3)を ご使用下さい。

●関連する項目の主な設定内容

GROUP	ITEM	DATA 表示	DATA 名(コメント)
01	10	11	フィールド端子
	11	0225	ABH2 フィールド端子の MV
			接続端子に G02 (基本形 PID)
		4.7.4	のMV出力を接続
	78	ALI	
	79	AL2	
	80	AL3	
	81	AL4	
02	10	21	基本形 PID
	15	0121	基本形 PID の PV 接続端子に C01 (APH9)の PV 出力な接続
	10	115.00	GUI (ADHZ)のFV 山川を按航 DVI 上阳敬却記字は
	19	115.00	PV 上限言報設定但
	20	-15.00	PV 下限警報設正他
	24	0122	基本形 PID の PV 接航端すに C01 (ABH9)の Ai 出力を接続
	20	0	設定形式 (0. LOCAL)
	40	1	
	40	10000	助作力向(逆[r v 増 C M v 减])
	02	10000	レンジン工限設定値(実重衣小用)
	03	0	レンシー () () () () () () () () () (
	84	2	小奴県位直(石がら)
	86	0	MV 迎力回衣小(止)
03	10	25	指示計の取換体地では、のの
	15	0122	指示計のPV 接続端子にG01 (ABH9)の A; 出力を接続
	10	115.00	(ADII2)のAI 山力を扱机 PV 上阻整報設完値
	20	15.00	IV 工限营粮設定值
	20	10000	101版言報設定値(実景表示田)
	02 92	10000	レンジエ限設定値(実量表示用)
	00	00	小粉占台署(ナムこ)
01	10	2	
01	10	90	フニップフランド
	10	13.0000	CO2[基本形 PID]の PV 下限
	12	01.0202	警報端子をG01(ABH2)の
	13	07:0105	AL1 ランプ入力端子に接続
	14	01:0201	G02[基本形 PID]の PV 上限 整 報 避 子 た C01 (ABH2)の
	15	07:0106	AL2 ランプ入力端子に接続
	12	01:0302	G03[指示計]のPV下限警報
	13	07:0107	_' っすを G01 (ABH2) の AL3 ラ ンプ入力端子に接続
	14	01:0301	G03[指示計]のPV上限警報
	15	07:0108	端子を G01 (ABH2) の AL4 ラ ンプ入力端子に接続
	16	00: 0000	終わり

設定用ツール

ABH2 は出荷時の初期設定にて PID コントローラと して機能します。

出荷時の状態からのループ変更や、内部計器ブロック の機能を組み合わせて利用するためには、下記設定用機 器が必要です。別途ご用意下さい。

- ・ビルダーソフト(形式:SFEW3)
- ・コンフィギュレータ用赤外線通信アダプタ(形式: COP-IRU)またはコンフィギュレータ接続ケーブル (形式:COP-US)

_____ パラメータ設定

ABH2では、主なパラメータの変更は、前面ボタンより行うことができます。

- Display ボタンの長押し(1秒以上)を繰り返し、チューニング画面にします。
- ②1/2ボタンによりループを選択します。
- ③↓、↑ボタンにより変更するパラメータを選択し、 Display ボタンにて項目を確定します。

■設定値が数値の場合

↓、↑ボタンにてパラメータの値を変更し、Display ボタンにて設定値を決定します。

■設定値が文字の場合

- ①↓、↑ボタンにて1文字を変更し、Displayボタンに て1文字分右の文字に移動します。
 (右端の場合、左端に移動)
 変更が終了すれば、Displayボタン長押し(1秒以上)
 にて変更内容が確定されます。
 ②「WRT:パラメータ保存」を選択し、Displayボタン
 にて変更値を EEPROM に保存します。
 続けて表示される保存確認メッセージに YES(保存)、
- NO(中断)を選んで決定します。
- (↓ :NO、↑ :YES、Display:決定)
- 注)「CLR:パラメータ変更破棄」を選択し Display ボタンに て変更内容を破棄します。

●チューニング画面設定パラメーター覧(出荷時)

No.	記号	設定範囲	内容	ループ1:基本形 PID	ループ2:指示計
1	PB	0~1000 %	比例帯	PID のチューニングパラ	_
2	TI	0.00~100.00 分	積分時間(0:積分なし)	メータを設定	_
3	TD	0.00~10.00分	微分時間(0: 微分なし)	-	_
4	PH	-15.00~+115.00 %	PV 上限警報設定值	PV 上限値を設定	Ai 上限値を設定
5	PL	-15.00~+115.00 %	PV 下限警報設定値	PV 下限値を設定	Ai 下限値を設定
6	MH	\pm 115.00 %	出力上限制限值	MV 上限制限を設定	_
7	ML	\pm 115.00 %	出力下限制限值	MV 下限制限を設定	_
8	DL	0.00~115.00 %	偏差警報設定値	PV と SP の許容偏差を設定	_
9	SM	LOCAL、 CAS / LOCAL	設定形式	LOCAL * 1	
10	DR	正、 逆 [PV 増で MV 減]	動作方向	PID の動作を設定	_
11	DM	PV 微分、偏差微分	微分形式		_
12	MD	正、逆	MV 正逆方向表示		_
13	TG	10 文字以下	Tag No.	Tag No. を設定	
14	MH	\pm 32000	レンジ上限設定値(実量)	PV 入力の工業スケール、	Ai 入力の工業スケール、
15	ML	\pm 32000	レンジ下限設定値(実量)	単位を設定	単位を設定
16	DP	0~5	小数点位置(右から)		
17	TU	半角 8 文字以下	単位		
18	SD	2~10	目盛り分割数		
19	AL1	半角4文字以下	AL1 表示文字	AL1	_
20	AL2	半角4文字以下	AL2 表示文字	AL2	
21	AL3	半角4文字以下	AL3 表示文字		AL3
22	AL4	半角4文字以下	AL4 表示文字		AL4
23	TP	12 種類 ^{* 2}	PV 入力タイプ	1~5 V	_
24	TA	12 種類 ^{* 2}	Ai 入力タプ	-	$1\sim 5 V$
25	AT	OFF、ON	ON: オートチューニング移行	_	
26	ID	0000~99999	コンフィギュレータ通信用		
			ID No.	_	
27	CD	0~F(16 進数)	カード No. * ³	_	
28	BL	1~5	バックライト輝度	_	
29	SV	OFF、1~99分	スクリーンセーバ		

* 1、SM:設定形式を CAS / LOCAL に設定すると Ai をカスケード SP として用いることができます。

-20 \sim +20 mA, $~4 \sim$ 20 mA, $~0 \sim$ 20 mA

*3、CD No.の変更があった場合、パラメータ保存後にリセットがかかります。

オートチューニング

ABH2 では、リミットサイクル法を用いてオート チューニングを行います。

制御出力(MV)を階段状に2回変化させ、チューニング作動点(CV)近辺で測定値(PV)を観測します。 その際のPV値の振幅と周期から最適なP、I、Dの各パラメータを求めます。

オートチューニング中は、制御系が思わぬ動きをする おそれがありますので充分にご注意下さい。

- ①チューニング画面にて「AT:オートチューニング」 を選択し、オートチューニング画面に移行します。
- ②↓、↑ボタンーにより変更するパラメータを選択し、 Display ボタンにて項目を確定します。
- ③↓、↑ボタンにてパラメータの値を変更し、Display ボタンにて設定値を決定します。
- ④「AT:チューニング開始」を選択し、オートチューニングを開始します。
- ⑤オートチューニング中はAUT インジケータが青色点滅します。
- ⑥オートチューニングが終了すると、チューニング画面 に戻ります。

●オートチューニングパラメーター覧

No.	記号	設定範囲	内容
1	SP	0~1000 %	SP 目標値
2	CV	0.00~100.00 分	チューニング作動値
3	PH	-15.00~+115.00 %	PV 上限警報設定值
4	PL	-15.00~+115.00 %	PV 下限警報設定值
5	MH	$\pm \ 115.00$ %	出力上限制限值
6	ML	$\pm \ 115.00$ %	出力下限制限值
7	MI	$\pm \ 115.00$ %	異常停止時 MV 値
8	ТО	1~3200 分	タイムアウト時間
9	CM	目標値、外乱	制御モード
10	CA	PID, PI	制御動作

点 検

- ①端子接続図に従って結線がされていますか。
 ②供給電源の電圧は正常ですか。
- 端子番号②-③間をテスタの電圧レンジで測定して下 さい。

雷対策

雷による誘導サージ対策のため弊社では、電子機器専用避雷器<エム・レスタシリーズ>をご用意致しております。併せてご利用下さい。

保証

本器は、厳密な社内検査を経て出荷されておりますが、 万一製造上の不備による故障、または輸送中の事故、出 荷後3年以内正常な使用状態における故障の際は、ご返 送いただければ交換品を発送します。