リモートI/O変換器 *R3* シリーズ

取扱説明書

4回路、クランプ式交流電流センサ CLSB 用

電力入力カード

形 式

R3-WT4B

ご使用いただく前に

このたびは、弊社の製品をお買い上げいただき誠にありがとうございます。本器をご使用いただく前に、下記 事項をご確認下さい。

■梱包内容を確認して下さい

. 電力入力カード......1台

■形式を確認して下さい

お手元の製品がご注文された形式かどうか、スペック 表示で形式と仕様を確認して下さい。

■取扱説明書の記載内容について

本取扱説明書は本器の取扱い方法、外部結線および簡単な保守方法について記載したものです。

設定には、コンフィギュレータソフトウェア(形式: R3CON)が必要です。詳細は R3CON の取扱説明書を ご参照下さい。

コンフィギュレータソフトウェアは、弊社のホームページよりダウンロードが可能です。

ご注意事項

●ホットスワップについて

・カードの交換は他のカードに影響を及ぼしません。このため、電源を入れたままの交換が可能となります。 ただし、複数のカードを同時に交換することは大きな 電源変動を起こす可能性があります。交換は1台ずつ 行って下さい。

●取扱いについて

・本器のスイッチ類は、通電時に操作しないで下さい。 スイッチによる設定変更は、電源が遮断された状態で 行って下さい。

●設置について

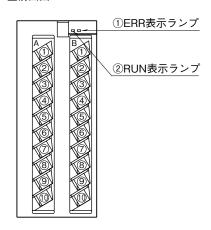
- ・屋内でご使用下さい。
- ・塵埃、金属粉などの多いところでは、防塵設計のきょ う体に収納し、放熱対策を施して下さい。
- ・振動、衝撃は故障の原因となることがあるため極力避 けて下さい。
- ・周囲温度が $-10 \sim +55$ \mathbb{C} を超えるような場所、周囲湿度が $30 \sim 90$ % RH を超えるような場所や結露するような場所でのご使用は、寿命・動作に影響しますので避けて下さい。

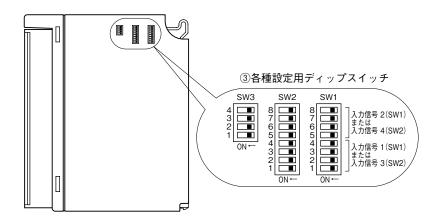
●配線について

- ・配線は、ノイズ発生源(リレー駆動線、高周波ライン など)の近くに設置しないで下さい。
- ・ノイズが重畳している配線と共に結束したり、同一ダ クト内に収納することは避けて下さい。

●その他

・本器は電源投入と同時に動作しますが、すべての性能 を満足するには 10 分の通電が必要です。


取付方法


ベース (形式:R3-BS□) をお使い下さい。

各部の名称

■前面図

■側面図

■状態表示ランプ

RUN 表示ランプ: 赤/緑 2 色 LED

内部通信バス1正常時、赤色点灯 内部通信バス2正常時、緑色点灯

バス1およびバス2が共に正常な場合は赤色と緑色が同時に点灯し橙色となります。

ERR 表示ランプ: 赤/緑 2 色 LED

入力異常発生時、赤色点灯 正常動作時、緑色点灯

■ディップスイッチの設定

(*) 工場出荷時設定値

本体側面にあるディップスイッチにて、測定要素、演算方法等を設定することができます(設定はカードの電源を切って行って下さい。設定変更時は、積算値リセットを行って下さい)。

●SW1、SW2 設定項目

SW	СН	設定項目	0: OFF(*)	1: ON	
SW1-2	1	積算リセット	無効 カウントオーバー時 10 ⁴ または 10 ⁹ で止まります	有効 カウントオーバー時1に戻ります	
SW1-3	1	潮流演算	無効	有効	
SW1-6	2	積算リセット	無効 カウントオーバー時 10 ⁴ または 10 ⁹ で止まります	有効 カウントオーバー時1に戻ります	
SW1-7	2	潮流演算	無効	有効	
SW2-2	3	積算リセット	無効 カウントオーバー時 10 ⁴ または 10 ⁹ で止まります	有効 カウントオーバー時1に戻ります	
SW2-3	3	潮流演算	無効	有効	
SW2-6	4	積算リセット	無効 カウントオーバー時 10 ⁴ または 10 ⁹ で止まります	有効 カウントオーバー時1に戻ります	
SW2-7	4	潮流演算	無効	有効	

●SW3 設定項目

電力量の最大カウント値は 16 bit の場合は 10^4 、32 bit の場合は 10^9 です。

SW	0: OFF(*)	1: ON	
SW3-1	_	積算値リセット	

全積算値を 0 にリセットします。

リセット方法:SW3-1 を ON にして電源を入れます。

RUN 表示ランプが赤色に点滅、ERR 表示ランプが緑色に点灯します。

電源を OFF にして、SW3-1 を OFF にします。

SW3-3	SW3-4	測定要素 A	測定要素 B	測定要素 C
OFF(*)	OFF(*)	有効電力 16 bit	受電電力量 16 bit	送電電力量 16 bit
ON	OFF	有効電力 16 bit	受電電力量 32 bit	_
OFF	ON	受電電力量 16 bit	送電電力量 16 bit	_
ON	ON	受電電力量 32 bit	送電電力量 32 bit	_

潮流演算を有効にすると送電電力量は0になります。

注) SW1-1、4、5、8、SW2-1、4、5、8、SW3-2 は未使用のため、必ず "OFF" にして下さい。

コンフィギュレータソフトウェア設定

コンフィギュレータソフトウェアを用いることにより、以下の設定が可能です。 コンフィギュレータソフトウェア(形式:R3CON)の使用方法については、R3CON の取扱説明書をご覧下さい。

■チャネル個別設定

項目	設定可能範囲	出荷時設定
Adjust Bisa (有効電力ゼロ調整値)	-320.00~+320.00	0.00
Adjust Gain (有効電力スパン調整値)	-3.2000~+3.2000	1.0000
CT(A) / PRI(一次側電流値)	1~999	入力コード 1、5、A: 50
		入力コード 2、6、B: 100
CT (A) / U/T (一次側電流値 CT ターン数)	1~99	1
WFS (有効電力のスパン値)	0(VT と CT から自動計算)、	0
	1~10000	
WU (有効電力指数部 10 ⁿ の設定値)	-126~126	0
	(「WFS」の設定が0の場合、VT 比と	
	CT 比から自動計算)	
WhU (各有効電力量測定単位指数部 10 ⁿ の設定値)	-3~4	2 * 1
	*	

^{* 1、}R3-WT4B11、R3-WT4B21の場合は「3」。

■チャネル一括設定

項目	設定可能範囲	出荷時設定
Drop Out(ドロップアウト値)	0.00~10.00(%)	2.00 (%)
VT(V) / PRI(一次側電圧値)	1~10000	入力コード 1、2: 110
		入力コード 5、6: 220
		入力コード A、B: 200
VT (V) / U/T (一次側電圧値指数部 10° の設定値)	0~126	0

伝送データ

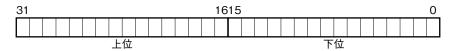
測定要素 A/B/C	有効電力 16 bit/	有効電力 16 bit/	受電電力量 16 bit/	受電電力量 32 bit/
	受電電力量 16 bit/	受電電力量 32 bit/	送電電力量 16 bit/	送電電力量 32 bit/
ADDRESS	送電電力量 16 bit	_	_	_
n	有効電力 ch 1	有効電力 ch 1	受電電力量 ch 1	受電電力量 ch 1 下位
n + 1	有効電力 ch 2	有効電力 ch 2	受電電力量 ch 2	受電電力量 ch 1 上位
n+2	有効電力 ch 3	有効電力 ch 3	受電電力量 ch 3	受電電力量 ch 2 下位
n + 3	有効電力 ch 4	有効電力 ch 4	受電電力量 ch 4	受電電力量 ch 2 上位
n + 4	受電電力量 ch 1	受電電力量 ch 1 下位	送電電力量 ch 1	受電電力量 ch 3 下位
n + 5	受電電力量 ch 2	受電電力量 ch 1 上位	送電電力量 ch 2	受電電力量 ch 3 上位
n + 6	受電電力量 ch 3	受電電力量 ch 2 下位	送電電力量 ch 3	受電電力量 ch 4 下位
n + 7	受電電力量 ch 4	受電電力量 ch 2 上位	送電電力量 ch 4	受電電力量 ch 4 上位
n + 8	送電電力量 ch 1	受電電力量 ch 3 下位	0	送電電力量 ch 1 下位
n + 9	送電電力量 ch 2	受電電力量 ch 3 上位	0	送電電力量 ch 1 上位
n + 10	送電電力量 ch 3	受電電力量 ch 4 下位	0	送電電力量 ch 2 下位
n + 11	送電電力量 ch 4	受電電力量 ch 4 上位	0	送電電力量 ch 2 上位
n + 12	0	0	0	送電電力量 ch 3 下位
n + 13	0	0	0	送電電力量 ch 3 上位
n + 14	0	0	0	送電電力量 ch 4 下位
n + 15	0	0	0	送電電力量 ch 4 上位
SW3-3/SW3-4 設定	OFF/OFF	ON/OFF	OFF/ON	ON/ON
R3CON Type 表示	WT4B * * * 0	WT4B * * * 1	WT4B * * * 2	WT4B * * * 3
R3−N □□の占有エリア設定				
例(R3−NP □の場合は 16 固	4、8、16	4、8、16	4、8	4、8、16
定となります)				

n はベースのスロットによるアドレス値

出荷時の電力量は1kWh単位に設定しています。

占有エリアの設定でそれぞれ伝送されるデータアドレスは、下記の通りとなります。

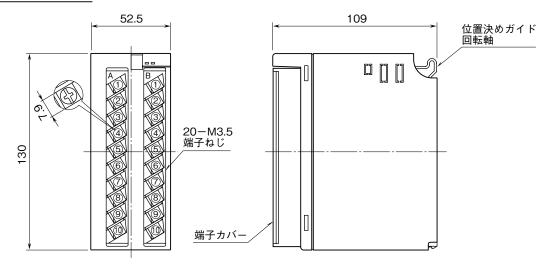
- $\cdot 4 \ (n \sim n + 3)$
- \cdot 8 (n \sim n + 7)
- $\cdot \ 16 \ (n \sim n + 15)$


入出力データ

■16 bit データ

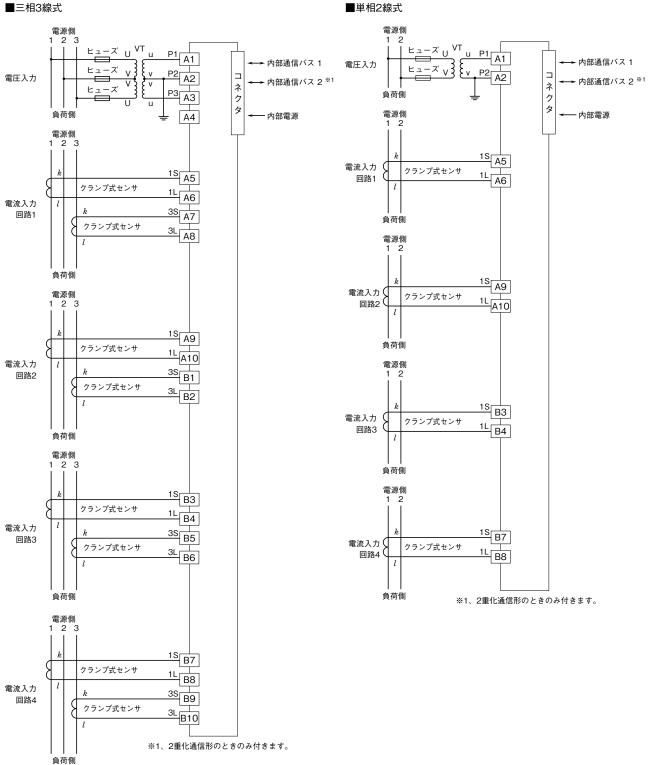
16 ビットのバイナリデータ 負の値は2の補数で示します。

■32 bit データ

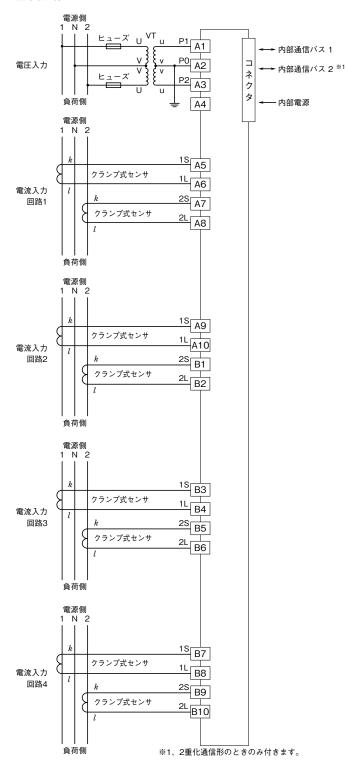


32 ビットのバイナリデータ 負の値は2の補数で示します。

接続


各端子の接続は端子接続図を参考にして行って下さい。

外形寸法図 (単位: mm)



端子接続図

■三相3線式

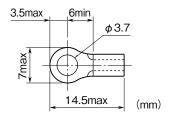
■単相3線式

配線

■端子ねじ

締付トルク: 0.8 N·m

■圧着端子


圧着端子は、下図の寸法範囲のものを使用して下さい。 また、Y 形端子を使用される場合も適用寸法は下図に準 じます。

推奨圧着端子: R 1.25-3.5(1.25-M3)(日本圧着端子製造)

R 1.25 - 3.5 (= \neq =)

(スリーブ付圧着端子は使用不可)

適 用 電 線: 0.3 ~ 0.75 mm²

保 証

本器は、厳密な社内検査を経て出荷されておりますが、 万一製造上の不備による故障、または輸送中の事故、出 荷後3年以内正常な使用状態における故障の際は、ご返 送いただければ交換品を発送します。