リモートI/O *R7* シリーズ

取扱説明書

HLS 用、チャネル間非絶縁 8 点、12 ビットデータ 高速直流電圧入力ユニット 形式 R7HL-SVF8NL

ご使用いただく前に

このたびは、弊社の製品をお買い上げいただき誠にありがとうございます。本器をご使用いただく前に、下記 事項をご確認下さい。

■梱包内容を確認して下さい

· 高速直流電圧入力ユニット......1 台

■形式を確認して下さい

お手元の製品がご注文された形式かどうか、スペック 表示で形式と仕様を確認して下さい。

■取扱説明書の記載内容について

本取扱説明書は本器の取扱い方法、外部結線および簡単な保守方法について記載したものです。

ご注意事項

●EU 指令適合品としてご使用の場合

- ・通信ケーブルは、二重シールドケーブル(ZHY262PBA 伸光精線工業株式会社)を使用して下さい。二重シールドケーブルで十分なシールド効果が得られない場合は、フェライトコア(GRFC-13 北川工業株式会社または相当品)を取付けて下さい。
- ・本器は盤内蔵形として定義されるため、必ず導電性の 制御盤内に設置して下さい。
- ・お客様の装置に実際に組込んだ際に、規格を満足させるために必要な対策は、ご使用になる制御盤の構成、接続される他の機器との関係、配線等により変化することがあります。従って、お客様にて装置全体でCEマーキングへの適合を確認していただく必要があります。

●供給電源

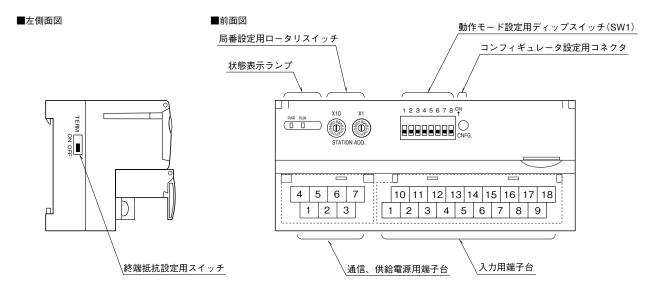
・許容電圧範囲、消費電流 スペック表示で定格電圧をご確認下さい。 直流電源:定格電圧 24 V DC の場合 24 V DC ± 10 %、約 50 mA

●取扱いについて

- ・本体の取外または取付けを行う場合は、危険防止のため必ず、電源および入力信号を遮断して下さい。
- ・本器のスイッチ類は、通電時に操作しないで下さい。 スイッチによる設定変更は、電源が遮断された状態で 行って下さい。

●設置について

- ・屋内でご使用下さい。
- ・塵埃、金属粉などの多いところでは、防塵設計のきょ う体に収納し、放熱対策を施して下さい。
- ・振動、衝撃は故障の原因となることがあるため極力避けて下さい。
- ・周囲温度が $-10 \sim +55$ $\mathbb C$ を超えるような場所、周囲湿度が $30 \sim 90$ % RH を超えるような場所や結露するような場所でのご使用は、寿命・動作に影響しますので避けて下さい。

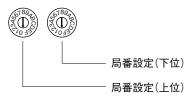

●配線について

- ・配線は、ノイズ発生源(リレー駆動線、高周波ライン など)の近くに設置しないで下さい。
- ・ノイズが重畳している配線と共に結束したり、同一ダ クト内に収納することは避けて下さい。

●その他

・本器は電源投入と同時に動作しますが、すべての性能 を満足するには 10 分の通電が必要です。

各部の名称


■状態表示ランプ

ランプ名	表示色	動作
PWR	緑色	内部 5 V 正常時点灯
RUN	緑色	リフレッシュデータの正常受信時点灯

■局番設定

リモートI / O ターミナルでは、局番(16 進数)の上位桁を左のロータリスイッチで、下位桁を右のロータリスイッチで設定します。占有局数は1 局です。

(設定可能範囲:01H~3FH)

■動作モード設定

(*) は工場出荷時の設定

●入力レンジ設定(SW1-3、4、5、6)

SW1-3	SW1-4	SW1-5	SW1-6	入力レンジ
OFF	OFF	OFF	OFF	$-10 \sim +10 \text{ V DC}(*)$
ON	OFF	OFF	OFF	-5 \sim +5 V DC
ON	ON	OFF	OFF	$0 \sim 10 \text{ V DC}$
OFF	OFF	ON	OFF	$0 \sim 5 \text{ V DC}$
ON	OFF	ON	OFF	$1\sim5\mathrm{V}\mathrm{DC}$
ON	ON	ON	ON	コンフィギュレータ設定

●伝送速度設定(SW1-8)

SW1-8	伝送速度				
SW1-0	付加コード: なし	付加コード:/3			
OFF	12 Mbps (*)	$3 \mathrm{Mbps}$			
ON	6 Mbps	未使用			

注) SW1-1、2、7 は未使用のため、必ず "OFF" にして下さい。

■終端抵抗設定

終端抵抗を有効にする場合にはスイッチを ON、無効に する場合には OFF に設定して下さい。 (出荷時設定 OFF)

■供給電源と通信の配線

●全二重通信の場合

①TXD+	通信ライン(スレーブ送信+)
②TXD-	通信ライン(スレーブ送信ー)
3FG	FG
<pre>4RXD+</pre>	通信ライン(マスタ送信+)
⑤RXD-	通信ライン(マスタ送信ー)
6+24V	供給電源(24V DC)
(7) 0 V	供給電源(OV)

●半二重通信の場合

①NC	未使用
②NC	未使用
③FG	FG
4TR+	通信ライン
⑤TR-	通信ライン
6+24V	供給電源(24V DC)
$\bigcirc 0 V$	供給雷源(∩V)

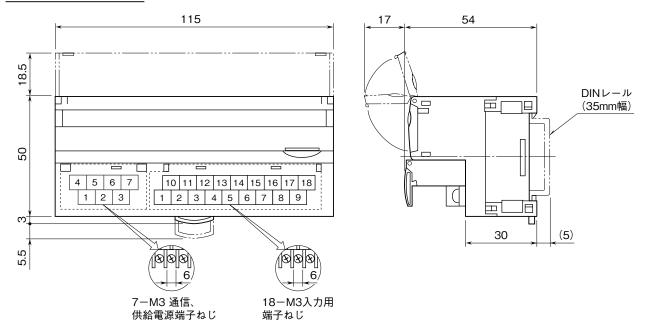
■入力端子配列

	10 V	0	11 V	1	12 V	2	13 V	3	14 N	С	15 V		16 V	5	17 V	6	18 V	7
1 C0	M0	2 C0	M1	3 C0	M2	4 C0	МЗ	5 N	С	6 C0	M4	7 C0	M5	8 C0	M6	9 C0	M7	

端子 番号	信号名	機能	端子 番号	信号名	機能
1	COM0	コモン 0	10	V0	電圧入力 0
2	COM1	コモン1	11	V1	電圧入力1
3	COM2	コモン2	12	V2	電圧入力 2
4	COM3	コモン3	13	V3	電圧入力3
5	NC	未使用	14	NC	未使用
6	COM4	コモン4	15	V4	電圧入力4
7	COM5	コモン5	16	V5	電圧入力 5
8	COM6	コモン6	17	V6	電圧入力6
9	COM7	コモン7	18	V7	電圧入力7

コンフィギュレータソフトウェア設定

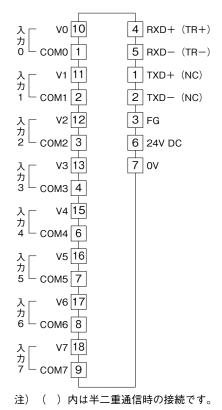
コンフィギュレータソフトウェアを用いることにより、以下の設定が可能です。 コンフィギュレータソフトウェア(形式:R7CON)の使用方法については、R7CON の取扱説明書をご覧下さい。


■チャネル個別設定

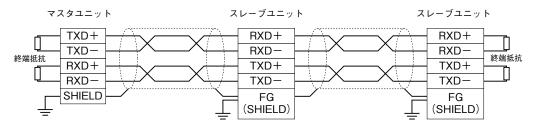
設定可能範囲	出荷時設定値
-10∼+10 V DC	-10∼+10 V DC
-5∼+5 V DC	
0∼10 V DC	
0∼5 V DC	
1∼5 V DC	
-320.00~+320.00(%)	0.00 (%)
-3.2000~+3.2000	1.0000
	-10~+10 V DC -5~+5 V DC 0~10 V DC 0~5 V DC 1~5 V DC -320.00~+320.00 (%)

接続

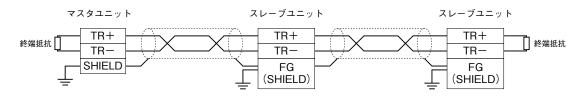
各端子の接続は端子接続図を参考にして行って下さい。


外形寸法図 (単位:mm)

端子接続図

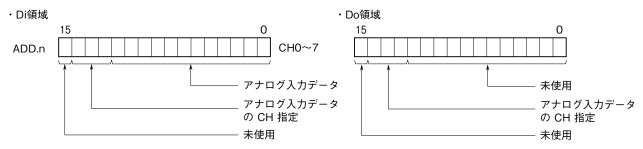

EMC (電磁両立性) 性能維持のため、FG 端子を接地して下さい。

注)FG 端子は保護接地端子(Protective Conductor Terminal)ではありません。



通信ケーブルの配線

- ■マスタユニットとの配線
- ●全二重通信の場合


●半二重通信の場合

注)両端のユニットには、必ず終端抵抗設定用スイッチをONにして下さい。

ビット配置

■アナログ入力

12ビットのバイナリデータで示します。

CH 指定ビットを使用して、8点の入力データを8回のスキャンに分けて伝送します。

■データ取得手順

- ①上位プログラムから D_0 領域のアナログ入力データの CH 指定ビット (ビット $12\sim 14$) に、所望の CH 指定ビット (下表参照) を書込みます。
- ②1スキャン後にDi領域から、上記で指定したCH指定ビットとその入力データが読込めます。

チャネル	CH 指定ビット	チャネル	CH 指定ビット
0	000	4	100
1	001	5	101
2	010	6	110
3	011	7	111

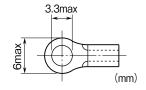
配線

■端子ねじ

締付トルク: 0.5 N·m

■圧着端子

圧着端子は、M3 用の下図の寸法範囲のものを使用して下さい。また、Y 形端子を使用される場合も適用寸法は下図に準じます。


推奨圧着端子

・通信ケーブル:適用電線 0.2~0.5 mm² (AWG26~22)

推奨メーカ 日本圧着端子製造

・そ の 他:適用電線 $0.25\sim1.65~\mathrm{mm}^2~\mathrm{(AWG22}\sim16)$

推奨メーカ 日本圧着端子製造、ニチフ

保 証

本器は、厳密な社内検査を経て出荷されておりますが、 万一製造上の不備による故障、または運送中の事故、出 荷後3年以内正常な使用状態における故障の際は、ご返 送いただければ交換品を発送します。