省スペースリモートI/O変換器 R8 シリーズ

取扱説明書

CC-Link 用、Ver.2.00、アナログ 64 点対応

電源通信ユニット

形式

R8-NC3

ご使用いただく前に

このたびは、弊社の製品をお買い上げいただき誠にありがとうございます。本器をご使用いただく前に、下記 事項をご確認下さい。

■梱包内容を確認して下さい

•	電源通信ユニット1	台
	エンドカバー1	台

■形式を確認して下さい

お手元の製品がご注文された形式かどうか、スペック 表示で形式と仕様を確認して下さい。

■取扱説明書の記載内容について

本取扱説明書は本器の取扱い方法、外部結線および簡単な保守方法について記載したものです。

■製品で使用しているシンボルマーク

UL認定品の場合、以下のコネクタ付近に機能接地のシンボルマークを表示しています。

- ・供給電源、フィールド用電源用コネクタ
- ・CC-Link 通信用コネクタ

ご注意事項

●注意

・本取扱説明書の安全に関する指示事項に反する取扱い をされた場合、本器の安全性は損なわれます。

●UL 認定品としてご使用の場合

- ・本器は設置カテゴリ II、汚染度 2 の環境での使用に適合しています。
- ・高度 2000 m 以下でご使用下さい。
- ・UL 認定品として使用される場合、産業用制御盤また は相当品に設置して下さい。
- ・UL 認定品として使用される場合、フィールド用電源 は使用できません。
- ・最大開回路電圧 30 V DC 以下で、最大制限電流 5 A の電気的に絶縁された電源をご使用下さい(代替として、UL 61010-1 に従った"エネルギー被制限回路(LIM)" もしくは UL 1310 に従った"クラス 2"を備えた電源ユニットを使用することもできます)。

●EU 指令適合品としてご使用の場合

- ・本器は盤内蔵形として定義されるため、必ず制御盤内 に設置して下さい。
- ・お客様の装置に実際に組込んだ際に、規格を満足させるために必要な対策(例:電源、入出力にノイズフィルタ、クランプフィルタの設置など)は、ご使用になる制御盤の構成、接続される他の機器との関係、配線等により変化することがあります。従って、お客様にて装置全体でCEマーキングへの適合を確認していただく必要があります。

●供給雷源

・許容電圧範囲、消費電力

スペック表示で定格電圧をご確認下さい。

直流電源:定格電圧 24 V DC の場合

 $24 \text{ V DC} \pm 10 \%$ 、12 W 以下 (内部電源最大電流 1.6 A 時)

フィールド用電源(入出力カード用フィールド電源): $24 \, \mathrm{VDC} \pm 10 \, \%$ 、許容電流 $10 \, \mathrm{A}$

(供給電源(フィールド用電源) 用コネクタから内部 通信バスコネクタを経由して、各入出力カードに供給 します。フィールド用電源の消費電流が許容電流以下 になるようにして下さい)

●取扱いについて

- ・本体の取外または取付を行う場合は、危険防止のため 必ず、電源を遮断して下さい。
- ・本器のスイッチ類は、通電時に操作しないで下さい。 スイッチによる設定変更は、電源が遮断された状態で 行って下さい。

●設置について

- ・屋内でご使用下さい。
- ・塵埃、金属粉などの多いところでは、防塵設計のきょ う体に収納し、放熱対策を施して下さい。
- ・振動、衝撃は故障の原因となることがあるため極力避けて下さい。
- ・周囲温度が $0 \sim 55 \mathbb{C}$ を超えるような場所、周囲湿度が $30 \sim 90 \%$ RH を超えるような場所や結露するような 場所でのご使用は、寿命・動作に影響しますので避けて下さい。

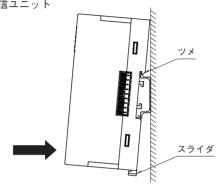
●配線について

- ・配線は、ノイズ発生源(リレー駆動線、高周波ライン など)の近くに設置しないで下さい。
- ・ノイズが重畳している配線と共に結束したり、同一ダ クト内に収納することは避けて下さい。

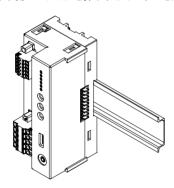
●その他

・本器は電源投入と同時に動作します。ただし、アナロ グカードについては性能を満足するために、アナログ 回路のウォームアップ時間 10 分の通電が必要です。

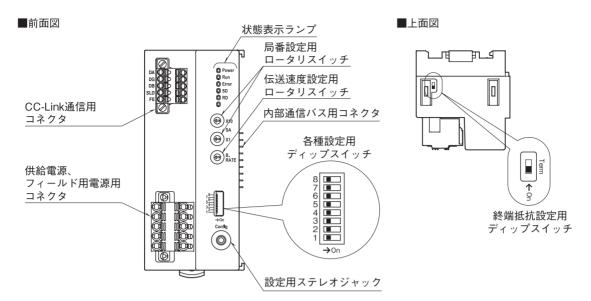

取付方法


R8 シリーズは、内部電源の供給と内部通信を各カードのコネクタを介して行っているため、ベースは必要ありません。各カードは、コネクタを介して内部電源の供給と内部通信を行っているため、電源を入れたままでの交換をすることはできません。

■局番と通信の設定


必ず電源を入れる前に、電源通信ユニットの局番、伝 送速度、占有エリア、拡張サイクリックを設定して下さい。

■取付方法



・上側のツメをDINレールに引っ掛け、下部を押して固定します。 取外す場合は、下側のスライダを押し下げてロックを解除します。

各部の名称

■前面スイッチの設定

(*) は工場出荷時の設定

●局番設定

リモート I / O ターミナルでは、局番(10 進数)を 2 個のロータリスイッチで設定します(1 \sim 99)。

(工場出荷時設定:00)

----- 局番設定(×10)

----- 局番設定 (×1)

●伝送速度設定

リモートI/Oターミナルでは、伝送速度を1桁のロータリースイッチで設定します($5\sim9$ は未使用です。必ず $0\sim4$ に設定して下さい)。

(工場出荷時設定:0)

0:156kbps 1:625kbps

2:2.5Mbps

3:5Mbps

4:10Mbps

- 伝送速度の設定

●占有エリア設定(SW1)

占有エリア	SW1
1	ON
2(*)	OFF

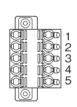
●拡張サイクリック設定(SW2)

拡張サイクリック	SW2
2(*)	OFF
4	ON

注) SW3~8 は未使用のため、必ず "OFF" にして下さい。

■終端抵抗設定用ディップスイッチ

スイッチを ON にすると、通信回路の終端抵抗が接続されます。


■供給電源、フィールド用電源の配線

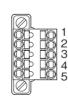
本体側コネクタ: MSTBV2,5/5-GF-5,08AU

(フエニックス・コンタクト製)

ケーブル側コネクタ:TFKC2,5/5-STF-5,08AU

(フエニックス・コンタクト製)

(-		,,,,	- V) / (A)
	端子 番号	信号名	機能
	1	24V	供給電源 24 V
	2	0V	供給電源 0 V
	3	+	フィールド用電源 24 V
	4	_	フィールド用電源 0 V
	5	FE1	供給電源接地


■CC-Link の配線

本体側コネクタ: MC1,5/5-GF-3,5

(フエニックス・コンタクト製)

ケーブル側コネクタ:TFMC1,5/5-STF-3,5

(フエニックス・コンタクト製)

(-	/	
端子 番号	信号名	機能
1	DA	DA
2	DG	DG
3	DB	DB
4	SLD	シールド
5	FE	機能接地

■状態表示ランプ

ランプ名	表示色	動作
Power	緑色	内部 5 V 正常時点灯
Run	緑色	正常通信時点灯*1
Error	赤色	受信データが異常時点灯
SD	緑色	データ送信時点灯
RD	緑色	データ受信時点灯

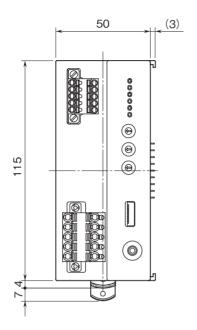
* 1、マスタ機器からの要求命令が途絶えると、Run ランプは 消灯します。

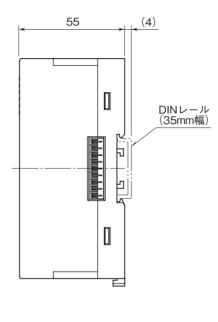
■状態表示ランプ

Power	Run	Error	SD * 1	RD	動 作* ²
0	0	0	0	0	正常交信しているが、ノイズで CRC エラーが時々生じている
	$\overline{}$	0	0		正常交信しているが、伝送速度・局番設定スイッチが故障
				0	"Error 表示ランプ"は約 0.5 秒周期で点滅
0	0	0	0		_
0	\circ	0		0	受信データが CRC エラーとなり、応答できない
0	\circ	0			_
0	\circ		0	0	正常交信
0	\circ		0		_
0	0	•		0	自局宛データを受信しない
0	0	•	•		_
0		0	0	0	ポーリング応答はしているが、リフレッシュ受信が CRC エラー
0	•	0	0		_
0	•	0	•	0	自局宛データが CRC エラー
0	•	0	•	•	_
0	•	•	0	0	リンク起動されていない
0	•	•	0		_
					自局宛データがないか、ノイズにより自局宛を受信不可
					(マスタから送信されてくるデータ量不足)
0					断線などでデータが受信できない
0		0		•/0	伝送速度、局番設定不正
		•	•		電源断、電源故障

●消灯 ○点灯 ◎点滅

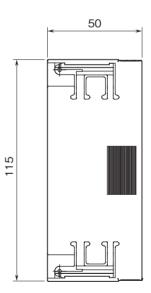
^{* 1、}SD 表示ランプは、伝送速度が速く接続台数が少ない場合、"点滅"ではなく"点灯"に見えることがあります。


^{* 2、}動作の"-"は通常は発生しません(表示ランプの故障などが考えられます)。


接続

各端子の接続は端子接続図を参考にして行って下さい。

外形寸法図 (単位:mm)


■本体

■エンドカバー

端子接続図

EMC (電磁両立性) 性能維持のため、FE1 端子を接地して下さい。

注)FE1 端子は保護接地端子(Protective Conductor Terminal)ではありません。

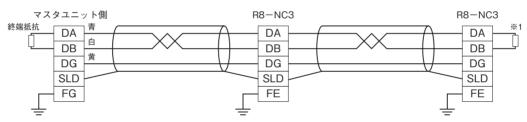
配線

■コネクタ形スプリング式端子台

・供給電源、フィールド用電源

適 用 電 線: $0.2 \sim 2.5 \text{ mm}^2$ (AWG $24 \sim 13$)

剥 離 長:10 mm


· CC-Link

通信ケーブル: CC-Link 準拠のケーブル

剥 離 長:10 mm

通信ケーブルの配線

■マスタユニットとの配線

※1、内蔵の終端抵抗を使用する場合、終端抵抗設定用スイッチをONにして下さい。

伝送データ

本体のディップスイッチにより、占有エリア "1" モードと占有エリア "2" モードに切替えることができます。 最大 16 枚の入出力カードを接続することができます。

占有エリア "1" モードでは全ての入出力カードの入出力データを 1 ワードと見なします。このため、アナログ 2 点の入出力カードでは、2 点目の入出力は使用できなくなります。

占有エリア "2" モードでは、全ての入出力カードの入出力データを 2 ワードと見なします。32 ビットデータを扱う入出力カードを使用する場合は、占有エリア "2" モードでご使用下さい。

接点入出力の場合は占有エリア数には影響を受けません。ただし、カード 1 枚あたり 16 点として割付けるため、4 点入出力のカードでは、入出力 5 \sim 16 は 0 となります。

●アナログ4点タイプの入出力カードを使用する場合

アナログ 4 点タイプの入出力カードについては、1 カードで 2 アドレスを使用します。例えば、R8-SV4N をアドレス 5 にして接続した場合、入力 1 と入力 2 がアドレス 5 に、入力 3 と入力 4 がアドレス 6 に割当てられます。

上例の場合、他の入出力カードをアドレス 6 に設定しないようにして下さい。また、占有エリア 2 にしている場合は、入力 1 ~入力 4 まで全て使えますが、占有エリア 1 に設定している場合は、入力 1 と入力 3 のみがデータとして使用されます。

■CC-Link サイクリックデータにおける確保領域

4局占有、拡張サイクリック2倍/4倍におけるCC-Linkサイクリックデータのデータ領域は次のとおりです。

占有 局数	拡張 サイクリック		リモート入力 RX	リモート出力 RY	リモートレジスタ RWr	リモートレジスタ RWw
	2倍	ユーザ領域	RX (n+0)0∼ RX (n+C)F	RY (n+0)0∼ RY (n+C)F	RWr (n+0)∼ RWr (n+31)	RWw (n+0)∼ RWw (n+31)
4	2 Іп	システム領域	RX (n+D)0∼ RX (n+D)F	RY (n+D)0∼ RY (n+D)F	_	_
4	4 倍	ユーザ領域	RX (n+0)0~ RX (n+1A)F	RY (n+0)0~ RY (n+1A)F	RWr (n+0)∼ RWr (n+63)	RWw (n+0)∼ RWw (n+63)
		システム領域	RX (n+1B)0∼ RX (n+1B)F	RY (n+1B)0~ RY (n+1B)F	_	_

■占有エリア"1"モード

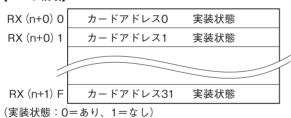
占有エリア "1" モードでは、拡張サイクリック数は2でご使用下さい。 CC-Link サイクリックデータにおけるR8-NC3で使用する領域は次のとおりです。

拡張サイクリック数=2

●リモートレジスタ (RWr)

【ユーザ領域】

カードアドレス0	入力データ1
カードアドレス1	入力データ1
カードアドレス2	入力データ1
カードアドレス30	入力データ1
カードアドレス31	入力データ1
	カードアドレス1 カードアドレス2 カードアドレス30


●リモートレジスタ(RWw)

【ユーザ領域】

RWw (n+0)	カードアドレス0	出力データ1	
RWw (n+1)	カードアドレス1	出力データ1	
RWw (n+2)	カードアドレス2	出力データ1	
			/
RWw (n+30)	カードアドレス30	出力データ1	
RWw (n+31)	カードアドレス31	出力データ1	

●リモート入力 (RX)

【ユーザ領域】

●リモート出力(RY)

【ユーザ領域】

使用しない

【システム領域】

RX (n+D)) в	リモートReadyフラグ
(起動後、	機器準備完	了後に"1"となります)

【システム領域】

使用しない

■占有エリア"2"モード

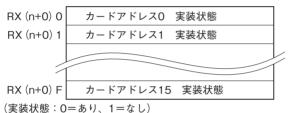
占有エリア"2"モードでは、カードアドレスの使用数に応じて拡張サイクリック数を2または4から選択して下さい。 拡張サイクリック数=2、4それぞれの場合について、CC-Link サイクリックデータにおけるR8-NC3で使用する領域は次のとおりです。

拡張サイクリック数=2

●リモートレジスタ (RWr)

【ユーザ領域】

RWr (n+0)	カードアドレス0	入力データ1	
RWr (n+1)	カードアドレス0	入力データ2	
RWr (n+2)	カードアドレス1	入力データ1	
RWr (n+3)	カードアドレス1	入力データ2	
RWr (n+30)	カードアドレス15	入力データ1	
RWr (n+31)	カードアドレス15	入力データ2	


●リモートレジスタ(RWw)

【ユーザ領域】

RWw (n+0)	カードアドレス0	出力データ1	
RWw (n+1)	カードアドレス0	出力データ2	
RWw (n+2)	カードアドレス1	出力データ1	
RWw (n+3)	カードアドレス1	出力データ2	
RWw (n+30)	カードアドレス15	出力データ1	
RWw (n+31)	カードアドレス15	出力データ2	

●リモート入力 (RX)

【ユーザ領域】

●リモート出力 (RY)

【ユーザ領域】

使用しない

【システム領域】

RX (n+D)) в	リモートReadyフラグ
(起動後、	機器	B準備完了後に"1"となります)

【システム領域】

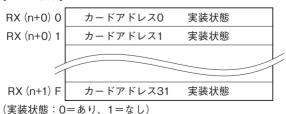
使用しない

拡張サイクリック数=4

●リモートレジスタ (RWr)

【ユーザ領域】

RWr (n+0)	カードアドレス0	入力データ1
RWr (n+1)	カードアドレス0	入力データ2
RWr (n+2)	カードアドレス1	入力データ1
RWr (n+3)	カードアドレス1	入力データ2
RWr (n+62)	カードアドレス31	入力データ1
RWr (n+63)	カードアドレス31	入力データ2


●リモートレジスタ(RWw)

【ユーザ領域】

RWw (n+0)	カードアドレス0	出力データ1
RWw (n+1)	カードアドレス0	出力データ2
RWw (n+2)	カードアドレス1	出力データ1
RWw (n+3)	カードアドレス1	出力データ2
RWw (n+62)	カードアドレス31	出力データ1
RWw (n+63)	カードアドレス31	出力データ2

●リモート入力 (RX)

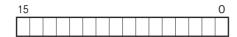
【ユーザ領域】

●リモート出力(RY)

【ユーザ領域】

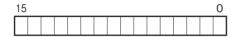
使用しない

【システム領域】

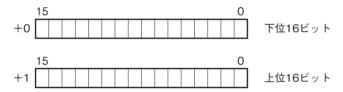

RX (n+1B) B	リモートReadyフラグ
(起動後、機器	景準備完了後に"1"となります)

【システム領域】

使用しない


入出力データ

■アナログデータ


各カードに設定されている入出力レンジの $0\sim100\%$ を $0\sim10000$ のバイナリ(2 進数)で示します。また、各データの負の値は2の補数で示します。

■パルスデータ(16 ビットデータ長)

パルスデータ(16 ビットデータ長)は、16 ビット長のバイナリデータです。 負の値はなしで、 $0 \sim 65535$ の範囲で示します。

■パルスデータ(32 ビットデータ長)

パルスデータ(32 ビットデータ長)は、32 ビット長のバイナリデータです。 低アドレスから順に下位 16 ビット、上位 16 ビットが配置されます。

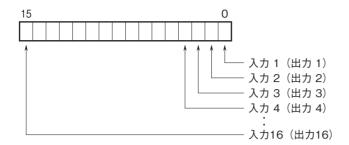
■アナログデータ (温度データ)

温度データは16ビット長のバイナリデータです。

基本的に、温度単位が摂氏($^{\circ}$ C)、絶対温度($^{\circ}$ K)の場合には 10 倍した整数部を示します。例えば、25.5 $^{\circ}$ Cの場合は "255" がデータとなります。また、温度単位が華氏($^{\circ}$ F)の場合には整数部がそのままデータとなります。例えば、135.4 $^{\circ}$ Fの場合は "135" がデータとなります。

負の値は2の補数で示します。

■アナログデータ (CT データ)



CT データは 16 ビット長のバイナリデータです。

変換データは実量値の 100 倍または 1000 倍の値を示します。例えば、0 \sim 600 A レンジで 520.35 A の場合は、変換 データが実量値の 100 倍なので 52035 がデータとなります。

負の値はなしで、 $0 \sim 65535$ の範囲で示します。

■接点データ

0 : OFF 1 : ON

以下の入出力混在タイプの機種については、出力 $1\sim16$ に加えて入力 $1(\sim3)$ にインターロック状態を割り当てています。

R8-DCM16ALZ	入力1	全体インターロック
R8-DCM16ALK	入力1	全体インターロック
	入力2	個別インターロック 1
	入力3	個別インターロック 2
R8-DCM16ALH	入力1	全体インターロック
	入力2	部分インターロック 1
	入力3	部分インターロック 2

保 証

本器は、厳密な社内検査を経て出荷されておりますが、 万一製造上の不備による故障、または輸送中の事故、出 荷後3年以内正常な使用状態における故障の際は、ご返 送いただければ交換品を発送します。