省スペースリモートI/O変換器 *R8* シリーズ

取扱説明書

Modbus 用

電源通信ユニット

形式

R8-NM1

ご使用いただく前に

このたびは、弊社の製品をお買い上げいただき誠にありがとうございます。本器をご使用いただく前に、下記 事項をご確認下さい。

■梱包内容を確認して下さい

•	電源通信ユニット	`1	台
	エンドカバー	1	台

■形式を確認して下さい

お手元の製品がご注文された形式かどうか、スペック 表示で形式と仕様を確認して下さい。

■取扱説明書の記載内容について

本取扱説明書は本器の取扱い方法、外部結線および簡単な保守方法について記載したものです。

ご注意事項

●EU 指令適合品としてご使用の場合

- ・本器は盤内蔵形として定義されるため、必ず制御盤内 に設置して下さい。
- ・お客様の装置に実際に組込んだ際に、規格を満足させるために必要な対策は、ご使用になる制御盤の構成、接続される他の機器との関係、配線等により変化することがあります。従って、お客様にて装置全体でCEマーキングへの適合を確認していただく必要があります。

●供給電源

・許容電圧範囲、消費電力

スペック表示で定格電圧をご確認下さい。

直流電源:定格電圧 24 V DC の場合

 $24~V~DC \pm 10~\%$ 、約 12~W(内部電源最大電流 1.6~A 時)

フィールド用電源(入出力カード用フィールド電源): 24 V DC ± 10 %、許容電流 10 A

(供給電源(フィールド用電源) 用コネクタから内部 通信バスコネクタを経由して、各入出力カードに供給 します。フィールド用電源の消費電流が許容電流以下 になるようにして下さい)

●取扱いについて

・本体の取外または取付を行う場合は、危険防止のため 必ず、電源を遮断して下さい。

●設置について

- ・屋内でご使用下さい。
- ・塵埃、金属粉などの多いところでは、防塵設計のきょ う体に収納し、放熱対策を施して下さい。
- ・振動、衝撃は故障の原因となることがあるため極力避 けて下さい。

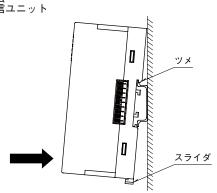
・周囲温度が -10 ~ +55℃を超えるような場所、周囲湿度が 30 ~ 90 % RH を超えるような場所や結露するような場所でのご使用は、寿命・動作に影響しますので避けて下さい。

●配線について

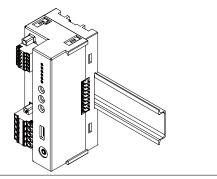
- ・配線は、ノイズ発生源(リレー駆動線、高周波ライン など)の近くに設置しないで下さい。
- ・ノイズが重畳している配線と共に結束したり、同一ダ クト内に収納することは避けて下さい。

●その他

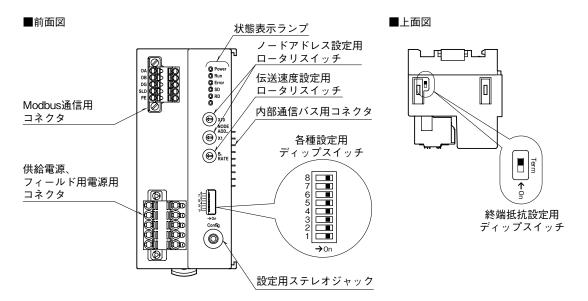
・本器は電源投入と同時に動作します。ただし、アナログカードについては性能を満足するために、アナログ回路のウォームアップ時間 10 分の通電が必要です。


取付方法

R8 シリーズは、内部電源の供給と内部通信を各カードのコネクタを介して行っているため、ベースは必要ありません。各カードは、コネクタを介して内部電源の供給と内部通信を行っているため、電源を入れたままでの交換をすることはできません。

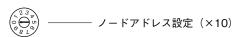

■ノードアドレスと通信の設定

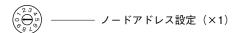
必ず電源を入れる前に、電源通信ユニットのノードア ドレス、伝送速度、パリティ、データを設定して下さい。


■取付方法 ●電源通信ユニット

・上側のツメをDINレールに引っ掛け、下部を押して固定します。 外す場合は、下側のスライダを押し下げてロックを解除します。

各部の名称




■前面スイッチの設定

(*) は工場出荷時の設定

●ノードアドレス設定

リモート I / O ターミナルでは、ノードアドレス(10 進数)の 10 の桁を左のロータリスイッチで、1 の桁を右のロータリスイッチで設定します(1 \sim 99)。(工場出荷時設定:00)

●伝送速度設定

リモートI/Oターミナルでは、伝送速度を1桁のロータリースイッチで設定します。 $(4 \sim 9)$ は未使用です。必ず $0 \sim 3$ に設定して下さい)

0:38.4kbps (工場出荷時設定)

1:19.2kbps 2:9600bps 3:4800bps

— 伝送速度の設定

●占有エリア設定(SW1)

SW	占有二	エリア 1	
300	2	1	
SW1	OFF(*)	ON	

●パリティ設定(SW6、SW7)*1

SW	パリティ			
5VV	なし	奇数	偶数	不可
SW6	OFF(*)	ON	OFF	ON
SW7	OFF(*)	OFF	ON	ON

●データ設定(SW8) *1

SW	データ				
SVV	RTU (Binary)	ASCII			
SW8	OFF(*)	ON			

*1、パリティ設定およびデータ設定により、1 バイトデータ の構成は下表の通りとなります。

~~~~	スタート	データ	パリティ	ストップ
通信設定	ビット	ビット長	ビット	ビット
RTU	1	8	1	1
	1	8	なし	2
ASCII	1	7	1	1
	1	7	なし	2

注)  $SW2 \sim 5$  は未使用のため、必ず "OFF" にして下さい。

### ■終端抵抗設定用ディップスイッチ

スイッチを ON にすると、通信回路の終端抵抗が接続されます。

■供給電源、フィールド用電源の配線

本体側コネクタ:MSTBV2,5/5-GF-5,08AU

(フエニックス・コンタクト製)

ケーブル側コネクタ:TFKC2,5/5-STF-5,08AU (フエニックス・コンタクト製)



端子 番号	信号名	機能
1	24V	供給電源 24V
2	OV	供給電源 OV
3	+	フィールド用電源 24V
4	_	フィールド用電源 OV
5	FE1	供給電源接地

### ■Modbusの配線

本体側コネクタ:MC1,5/5-GF-3,5

(フエニックス・コンタクト製)

ケーブル側コネクタ:TFMC1,5/5-STF-3,5 (フエニックス・コンタクト製)



端子 番号	信号名	機能
1	DA	DA
2	DB	DB
3	DG	DG
4	SLD	シールド
5	FE	FE

### ■状態表示ランプ

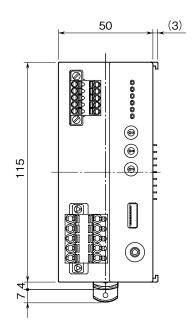
ランプ名	表示色	動作
Power	緑色	内部 5V 正常時点灯
Run	緑色	正常通信時点灯*1
Error	赤色	受信データが異常時点灯
SD	緑色	データ送信時点灯
RD	緑色	データ受信時点灯

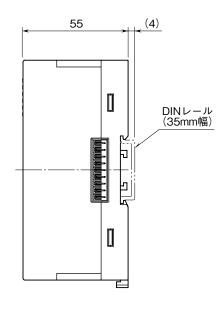
*1、マスタ機器からの要求命令が途絶えると、Run ランプは 消灯します。

## ■コンフィギュレータ設定

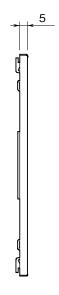
コンフィギュレータを用いることにより、下記の設定が可能です。

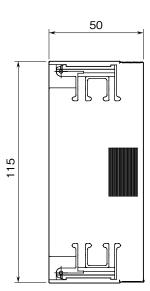
- ·上位通信断検出時間: 0.2 ~ 3200.0 秒 (工場出荷時: 3.0 秒)
- ・スキャンマップ:0~31 (工場出荷時:0~31)


注)コンフィギュレータソフトウェア(形式:R8CFG)の使用方法については、R8CFGの取扱説明書をご参照下さい。


# 接続

各端子の接続は端子接続図を参考にして行って下さい。

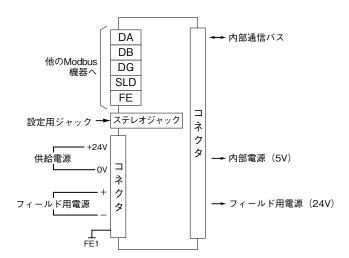

# 外形寸法図 (単位: mm)


# ■本体





## ■エンドカバー






# 端子接続図

EMC(電磁両立性)性能維持のため、FE1 端子を接地して下さい。

注)FE1 端子は保護接地端子(Protective Conductor Terminal)ではありません。

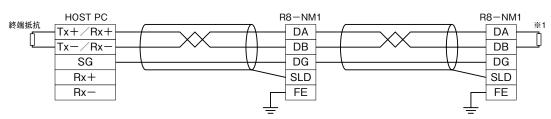


# 配線

## ■コネクタ形スプリング式端子台

・供給電源、フィールド用電源 適 用 電 線: $0.2 \sim 2.5 \ \mathrm{mm}^2$ 

剥 離 長:10 mm


Modbus

通信ケーブル: Modbus 準拠のケーブル

剥 離 長:10 mm

# 通信ケーブルの配線

### ■HOST PCとの配線



※1、内蔵の終端抵抗を使用する場合、終端抵抗設定用スイッチをONにして下さい。

# Modbus ファンクションコード

# ■Data and Control Functions

CODE	NAME		
01	Read Coil Status	0	Digital output from the slave
02	Read Input Status	0	Status of digital inputs to the slave
03	Read Holding Registers	0	General purpose register within the slave
04	Read Input Registers	0	Collected data from the field by the slave
05	Force Single Coil	0	Digital output from the slave
06	Preset Single Registers	0	General purpose register within the slave
07	Read Exception Status		
08	Diagnostics	0	
09	Program 484		
10	Poll 484		
11	Fetch Comm. Event Counter		Fetch a status word and an event counter
12	Fetch Comm. Event Log		A status word, an event counter, a message count and
			a field of event bytes
13	Program Controller		
14	Poll Controller		
15	Force Multiple Coils	0	Digital output from the slave
16	Preset Multiple Registers	0	General purpose register within the slave
17	Report Slave ID		Slave type/ 'RUN' status
18	Program 884/M84		
19	Reset Comm. Link		
20	Read General Reference		
21	Write General Reference		
22	Mask Write 4X Register		
23	Read/Write 4X Registers		
24	Read FIFO Queue		

## **■**Exception Codes

CODE	NAME		
01	Illegal Function	0	Function code is not allowable for the slave
02	Illegal Data Address	0	Address is not available within the slave
03	Illegal Data Value	0	Data is not valid for the function
04	Slave Device Failure		
05	Acknowledge		
06	Slave Device Busy		
07	Negative Acknowledge		
08	Memory Parity Error		

# **■**Diagnostic Subfunctions

CODE	NAME		
00	Return Query Data	0	Loop back test
01	Restart Comm. Option	0	Reset the slave and clear all counters
02	Return Diagnostic Register	0	Contents of the diagnostic data(2 bytes)
03	Change Input Delimiter Character	0	Delimiter character of ASCII message
04	Force Slave to Listen Only Mode	0	Force the slave into Listen Only Mode

# Modbus I / O 割付

本体前面のディップスイッチにより、占有エリア"1"モードと占有エリア"2"モードに切替えることができます。

占有エリア "1" モードでは全ての入出力カードの入出力データを 1 ワードと見なします。このため、アナログ 2 点の入出力カードでは、2 点目の入出力は使用できなくなります。

占有エリア "2" モードでは、全ての入出力カードの入出力データを2ワードと見なします。32 ビットデータを扱う入出力カードを使用する場合は、占有エリア "2" モードでご使用下さい。

接点入出力の場合は占有エリア数には影響を受けません。ただし、カード 1 枚あたり 16 点として割付けるため、4 点入出力のカードでは、入出力 5  $\sim$  16 は 0 となります。

# ●アナログ4点タイプの入出力カードを使用する場合

アナログ 4 点タイプの入出力カードについては、1 カードで 2 アドレスを使用します。例えば、R8-SV4N をアドレス 5 にして接続した場合、入力 1 と入力 2 がアドレス 5 に、入力 3 と入力 4 がアドレス 6 に割当てられます。

上例の場合、他の入出力カードをアドレス 6 に設定しないようにして下さい。また、占有エリア 2 にしている場合は、入力 1 ~入力 4 まで全て使えますが、占有エリア 1 に設定している場合は、入力 1 と入力 3 のみがデータとして使用されます。

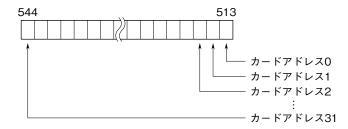
### ●入出力混在タイプの入出力カードを使用する場合

R8-NM1ではV1.04以降のバージョンで、入出力混在タイプの入出力カードにも対応しています。R8-NM1のバージョンはコンフィギュレータソフトウェア(形式:R8CFG)にて確認できます。

Coil (0X)	$1\sim 16$	カードアドレス 0	Do 1 ~ 16
	$17 \sim 32$	カードアドレス 1	Do 1 ~ 16
	$33 \sim 48$	カードアドレス 2	Do 1 ~ 16
	$49\sim 64$	カードアドレス3	Do 1 ~ 16
	:	:	:
	$497 \sim 512$	カードアドレス 31	Do 1 ~ 16
Input (1X)	$1\sim 16$	カードアドレス 0	Di 1 ∼ 16
	$17 \sim 32$	カードアドレス 1	Di 1 ∼ 16
	$33 \sim 48$	カードアドレス 2	Di 1 ∼ 16
	49 ~ 64	カードアドレス3	Di 1 ∼ 16
	:	:	:
	$497 \sim 512$	カードアドレス 31	Di 1 ∼ 16
	$513 \sim 544$	Active Card	l Map
	$545 \sim 560$	Status	3

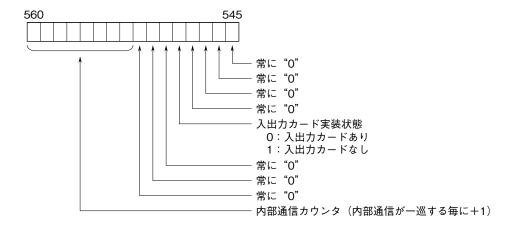
注)誤動作等の原因になりますので、上記以外のアドレスにはアクセスしないで下さい。

### ■占有エリア"1"モード


■口付エッグ Ⅰ	モート		
Input Register	1	カードアドレス 0	Ai 1 (INT)
(3X)	2	カードアドレス 1	Ai 1 (INT)
	3	カードアドレス 2	Ai 1 (INT)
	4	カードアドレス3	Ai 1 (INT)
	:	:	:
	32	カードアドレス 31	Ai 1 (INT)
	33、34	カードアドレス 0	Ai 1 (Float)
	35、36	カードアドレス 1	Ai 1 (Float)
	37、38	カードアドレス 2	Ai 1 (Float)
	39、40	カードアドレス3	Ai 1 (Float)
	:	:	:
	95、96	カードアドレス 31	Ai 1 (Float)
Holding Register	1	カードアドレス 0	Ao 1 (INT)
(4X)	2	カードアドレス1	Ao 1 (INT)
	3	カードアドレス 2	Ao 1 (INT)
	4	カードアドレス3	Ao 1 (INT)
	:	:	:
	32	カードアドレス 31	Ao 1 (INT)
	33、34	カードアドレス 0	Ao 1 (Float)
	35、36	カードアドレス 1	Ao 1 (Float)
	37、38	カードアドレス 2	Ao 1 (Float)
	39、40	カードアドレス3	Ao 1 (Float)
	:	:	:
	95、96	カードアドレス 31	Ao 1 (Float)
-			

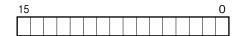
## ■占有エリア"2"モード

■占有エリア 2	モート		
Input Register	1	カードアドレス 0	Ai 1 (INT)
(3X)	2	カードアドレス 0	Ai 2 (INT)
	3	カードアドレス 1	Ai 1 (INT)
	4	カードアドレス 1	Ai 2 (INT)
	:	:	:
	63	カードアドレス 31	Ai 1 (INT)
	64	カードアドレス 31	Ai 2 (INT)
	65、66	カードアドレス 0	Ai 1 (Float)
	67、68	カードアドレス 0	Ai 2 (Float)
	69、70	カードアドレス1	Ai 1 (Float)
	71、72	カードアドレス 1	Ai 2 (Float)
	:	:	:
	189、190	カードアドレス 31	Ai 1 (Float)
	191、192	カードアドレス 31	Ai 2 (Float)
Holding Register	1	カードアドレス 0	Ao 1 (INT)
(4X)	2	カードアドレス 0	Ao 2 (INT)
	3	カードアドレス 1	Ao 1 (INT)
	4	カードアドレス 1	Ao 2 (INT)
	:	:	:
	63	カードアドレス 31	Ao 1 (INT)
	64	カードアドレス 31	Ao 2 (INT)
	65、66	カードアドレス 0	Ao 1 (Float)
	67、68	カードアドレス 0	Ao 2 (Float)
	69、70	カードアドレス 1	Ao 1 (Float)
	71, 72	カードアドレス 1	Ao 2 (Float)
	:	:	:
	189、190	カードアドレス 31	Ao 1 (Float)
	191、192	カードアドレス 31	Ao 2 (Float)


### ■ Active Card Map

入出力カードが実装されていることを示します。実装されている場合、対応するビットが"1"となります。




## **■**Status

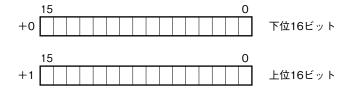
各カードとの通信状態をチェックします。カードが1台以上実装されている場合に対応するビットが"0"となります。



# 入出力データ

### ■アナログデータ




各カードに設定されている入出力レンジの  $0\sim 100\,\%$  を  $0\sim 10000$  のバイナリ(2 進数)で示します。また、各データの負の値は 2 の補数で示します。

# ■パルスデータ(16 ビットデータ長)



パルスデータ(16 ビットデータ長)は、16 ビット長のバイナリデータです。 負の値はなしで、0  $\sim$  65535 の範囲で示します。

## ■パルスデータ(32 ビットデータ長)



パルスデータ(32 ビットデータ長)は、32 ビット長のバイナリデータです。 低アドレスから順に下位 16 ビット、上位 16 ビットが配置されます。

## ■アナログデータ(温度データ)

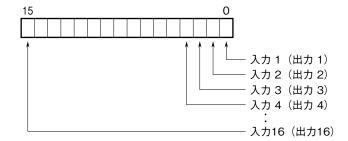


温度データは 16 ビット長のバイナリデータです。

基本的に、温度単位が摂氏( $\mathbb C$ )、絶対温度(K)の場合には 10 倍した整数部を示します。例えば、25.5 $\mathbb C$  の場合は "255" がデータとなります。また、温度単位が華氏( $\mathbb F$ )の場合には整数部がそのままデータとなります。例えば、135.4  $\mathbb F$  の場合は "135" がデータとなります。

負の値は2の補数で示します。

## ■アナログデータ(CT データ)




CT データは 16 ビット長のバイナリデータです。

変換データは実量値の 100 倍または 1000 倍の値を示します。例えば、0  $\sim$  600 A レンジで 520.35 A の場合は、変換 データが実量値の 100 倍なので 52035 がデータとなります。

負の値はなしで、 $0 \sim 65535$  の範囲で示します。

## ■接点データ



0 : OFF 1 : ON

以下の入出力混在タイプの機種については、出力  $1\sim 16$  に加えて入力  $1~(\sim 3)$  にインターロック状態を割り当てています(R8-NM1 のバージョン 1.04 以降で対応)。

R8-DCM16ALZ	入力1	全体インターロック
R8-DCM16ALK	入力1	全体インターロック
	入力 2	個別インターロック 1
	入力3	個別インターロック 2
R8-DCM16ALH	入力1	全体インターロック
	入力2	部分インターロック 1
	入力3	部分インターロック 2

# 保 証

本器は、厳密な社内検査を経て出荷されておりますが、 万一製造上の不備による故障、または輸送中の事故、出 荷後3年以内正常な使用状態における故障の際は、ご返 送いただければ交換品を発送します。