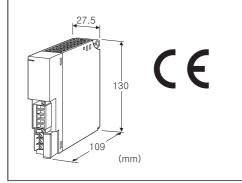
리모트 I/O R3 시리즈

MODBUS 통신 입출력 모듈


(Modbus용)

주요 기능과 특징

- ●Modbus 데이터를 다른 프로토콜의 통신 모듈로 취급할 수 있는 통신 입출력 모듈 (게이트웨이)
- ●통신 모듈은 아날로그 입출력이 혼재된 모듈로써 인식
- ●R3-NM1과 같은 Modbus 슬레이브 기기

전형적인 응용 예

●Modbus 와 CC-Link 의 게이트웨이

형식: R3-GM1S①

주문 시의 지정 사항

• 주문 코드 : R3-GM1S①

①은 아래에서 선택해 주십시오.

(예:R3-GM1S/CE/Q) • 옵션 사양 (예:/C01)

통신

S : 싱글 통신

①부가 코드 (복수항 지정 가능)

◆규격 & 인증

무기입: CE 마킹 없음 /CE: CE 적합품

◆옵션

무기입: 없음

/Q: 있음 (옵션 사양에서 별도로 지정해 주십시오)

옵션 사양

◆코팅 (상세한 내용은 당사 홈페이지를 참조해 주십시오)

/C01 : 실리콘계 코팅 (Silicone coating)

/C02 : 폴리우레탄계 코팅 (Polyurethane coating)

/C03: 고무계 코팅 (Rubber coating)

주의 사항

- · 통신 모듈 (형식 : R3-NC2, R3-NEIP1, R3-NF□, R3-NL□) 과 조합하여 사용할 수 없습니다.
- · 통신 모듈은 펌웨어 버전에 따라 사용할 수 없는 경우가 있습니다. 통신 모듈의 펌웨어 버전을 확인해 주십시오. 조합 가능한 통신 모듈의 펌웨어 버전은 아래와 같습니다. R3-NM3, R3-NML3 의 펌에어 버전 V1.00 또는 그 이상 의 버전

R3-NC1, R3-NC3, R3-ND□, R3-NE1, R3-NFL1, R3-NM1, R3-NM4, R3-NP1 의 펌에어 버전 V2.00 또는 그 이상의 버전

상기 이외의 통신 모듈은 펌웨어 버전의 제한이 없습니다.

부속품

· 종단 저항기 110Ω (0.25W)

기기 사양

접속 방식

· Modbus : 커넥터형 유로 단자대

(적용 전선 사이즈: 0.2~2.5mm², 박리 길이 7mm)

· 내부통신버스 : 베이스 (형식 : R3-BS) 에 접속

· 내부전원 : 베이스 (형식 : R3-BS) 를 통해 공급

· RUN 접점 출력: M3나사 2블록 단자대 접속 (조임 토크 0.5N·m)

권장 압착 단자 : 적용 압착 단자 사이즈 도면 참조 (슬리브 압착 단자는 사용 불가)

· 적용 전선 사이즈 : 0.75~1.25mm²

단자 나사 재질 : 철에 니켈도금

아이솔레이션: Modbus-내부통신버스·내부전원-

RUN 접점 출력 간

RUN 표시 램프: 2가지 색 (적색/녹색) LED

Modbus 통신이 정상인 동시에 R3 통신 모듈측의

필드 버스가 정상일 때 녹색불 점등

데이터 수신 시 적색불 점등

딥 스위치로 설정

ERR 표시 램프: 2가지 색 (적색/녹색) LED

교신 이상 시 녹색불 점등/점멸 (케이블 단선시 소등,

설정 이상 시 점멸)

데이터 송신 시 적색불 점등

딥 스위치로 설정

점유 모듈 수 설정 : 딥 스위치로 설정

■RUN 접점 출력

RUN 접점 : RUN 표시 램프가 녹색불 점등 시 ON (Modbus 통신이 정상인 동시에 R3 통신 모듈측의 필드 버

스가 정상 시에 ON)

정격 부하:

250V AC 0.5A ($\cos \phi = 1$)

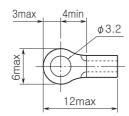
30V DC 0.5A (저항 부하)

(EU 지령 적합품으로 사용하는 경우에는 50V AC 미만입니

LΓ.)

최대 개폐 전압: 250V AC 30V DC

최대 개폐 전력: 250VA (AC) 150W (DC)


최소 부하: 1V DC 1mA

기계적 수명: 2000만회 (300회/분)

유도성 부하를 구동하는 경우에는 접점을 보호하고 노이즈

를 제거해 주십시오.

■적용 압착 단자 사이즈 (M3 나사) (단위:mm)

Modbus 사양

통신 규격: TIA/EIA-485-A 준거

전송 거리: 500m 이하

전송 케이블: 실드된 트위스트 페어 케이블

(CPEV-S 0.9 Ø)

통신 설정 : 전면의 딥 스위치로 설정 · 데이터 : RTU (바이너리), ASCII

· 패리티: 없음, 짝수, 홀수

· 전송 속도 : 4800, 9600, 19.2k, 38.4k (bps) 노드 어드레스 설정 : 01~F7 (로터리 스위치로 설정)

설치 사양

사용 온도 범위: -10~+55℃

사용 습도 범위 : 30~90%RH (결로되지 않을 것) 사용 주위 환경 : 부식성 가스 및 대량의 먼지가 없어야 함

설치 : 베이스 (형식 : R3-BS□) 에 설치

질량: 약 200g

성능

점유 영역: 16×n (점유 모듈 수: 1~8)

소비 전류 : 100mA

절연 저항: 100MΩ 이상/500V DC

내전압:

Modbus-내부통신버스 · 내부전원-RUN 접점 출력 간

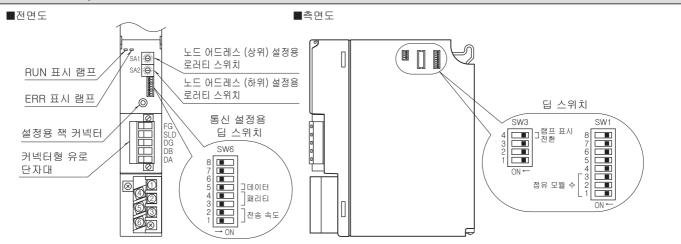
1500V AC 1분간

공급전원-FG 간 (전원 모듈로 절연)

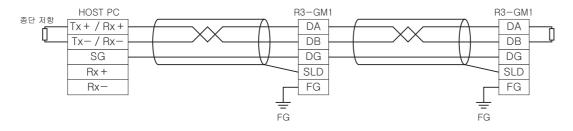
2000V AC 1분간

규격 & 인증

EU conformity:


전자 양립성 지령 (EMC지령)

EMI EN 61000-6-4


EMS EN 61000-6-2

RoHS 지령

전면도 및 측면도

통신 케이블 배선

Modbus 기능 코드

■ Data and Control Functions

CODE	NAME		
01	Read Coil Status		Digital output from the slave
02	Read Input Status	0	Status of digital inputs to the slave
03	Read Holding Registers	0	General purpose register within the slave
04	Read Input Registers	0	Collected data from the field by the slave
05	Force Single Coil		Digital output from the slave
06	Preset Single Register	0	General purpose register within the slave
07	Read Exception Status		
08	Diagnostics	0	
09	Program 484		
10	Poll 484		
11	Fetch Comm. Event Counter		Fetch a status word and an event counter
12	Fetch Comm. Event Log		A status word, an event counter, a message count and
			a field of event bytes
13	Program Controller		
14	Poll Controller		
15	Force Multiple Coils	0	Digital output from the slave
16	Preset Multiple Registers	0	General purpose register within the slave
17	Report Slave ID		Slave type / 'RUN' status
18	Program 884 / M84		
19	Reset Comm. Link		
20	Read General Reference		
21	Write General Reference		
22	Mask Write 4X Register		
23	Read / Write 4X Registers		
24	Read FIFO Queue		

■ Exception Code

CODE	NAME		
01	Illegal Function	0	Function code is not allowable for the slave
02	Illegal Data Address	0	Address is not available within the slave
03	Illegal Data Value	0	Data is not valid for the function
04	Slave Device Failure		
05	Acknowledge		
06	Slave Device Busy		
07	Negative Acknowledge		
08	Memory Parity Error		

■ Diagnostic Subfunctions

CODE	NAME		
00	Return Query Data	0	Loop back test
01	Restart Comm. Option	0	Reset the slave and clear all counters
02	Return Diagnostic Register	0	Contents of the diagnostic data (2 bytes)
03	Change ASCII Input Delimiter	0	Delimiter character of ASCII message
04	Force Listen Only Mode	0	Force the slave into Listen Only Mode

Modbus I/O 할당

	ADDRESS	DATA TYPE	DATA	점유 모듈 위치
Input (1X)	1025 ~ 1032		모듈 정보	
Input Registers (3X)	1 ~ 16	I	Analog Input (아날로그 입력)	1
	17 ~ 32			2
	33 ~ 48			3
	49 ~ 64			4
	65 ~ 80			5
	81 ~ 96			6
	97 ~ 112			7
	113 ~ 128			8
	257 ~ 288	F	Analog Input (아날로그 입력)	1
	289 ~ 320			2
	321 ~ 352			3
	353 ~ 384			4
	385 ~ 416			5
	417 ~ 448	480		6
	449 ~ 480			7
	481 ~ 512			8
Holding Registers (4X)	1 ~ 16	I	Analog Output (아날로그 출력)	1
	17 ~ 32			2
	33 ~ 48			3
	49 ~ 64			4
	65 ~ 80			5
	81 ~ 96			6
	97 ~ 112			7
	113 ~ 128			8
	257 ~ 288	F	Analog Output (아날로그 출력)	1
	289 ~ 320			2
	321 ~ 352			3
	353 ~ 384 385 ~ 416			4
			5	
	417 ~ 448			6
	449 ~ 480			7
	481 ~ 512			8

■ DATA TYPE

I : Int $0 \sim 10000 \ (0 \sim 100\%)$

F : Floating (32 비트 데이터는 Floating 어드레스로 액세스할 수 없습니다 .)

주) 상기 이외의 어드레스에는 액세스 하지 마십시오 . 오작동 등의 원인으로 될 수 있습니다 .

• 모듈 정보

각 모듈의 장착 (유무) 상태를 표시합니다.

설정된 점유 모듈 수 만큼 대응하는 비트가 "1", 미설정의 경우에는 "0"으로 됩니다.

전송 데이터

본 제품 측면의 딥 스위치로 점유 모듈 수를 설정합니다.

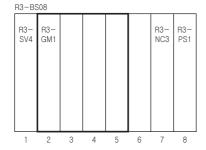
1대의 점유 모듈은 아날로그 입력 16워드, 아날로그 출력 16워드인 입출력 모듈에 해당하며 최대 8대 (입력 128워드, 출력 128워드) 의 데이터 전송이 가능합니다. Modbus 에서는 본 제품에 대해 최대 8대의 입출력 모듈이 장착되어 있는 것으로 인식합니다. (최대 8슬롯을 점유합니다.)

점유 모듈의 입출력의 설정의 "입력"은 아래와 같은 순서로 전송됩니다.

[Modbus 통신] ⇒ [R3 -GM1 모듈] ⇒ [R3 베이스] ⇒ [R3 통신 모듈]

Modbus 통신에 있어서 입력에는 출력 (Holding Register) 의 커맨드가 유효하며 출력에는 입력 (Input Register) 의 커맨드가 유효합니다.

주) 가상 모듈이 설정되어 있는 빈 슬롯에 실제 입출력 모듈을 장착하지 마십시오.

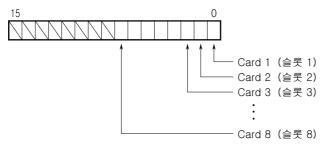

실제 입출력 모듈을 장착한 경우에는 내부통신버스에 에러가 발생하여 정상적으로 작동할 수 없습니다.

실제 입출력 모듈 수와 가상 모듈 수의 합계가 16대 이하로 되게끔 설정해 주십시오.

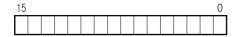
통신 모듈은 16대를 초과하는 데이터를 읽을 수 없습니다.

■본 제품을 슬롯 2 에 장착한 경우 (점유 모듈 수 4)

실제로는 슬롯 1 과 슬롯 2 에만 입출력 모듈이 장착되어 있지만 슬롯 7 에 장착되어 있는 R3-NC3 은 슬롯 1 \sim 5 에 입출력 모듈이 장착되어 있는 것으로 인식합니다 . 즉 슬롯 1 에 장착되어 있는 R3-SV4 에 대해서는 그대로 인식하지만 슬롯 2 에 장착되어 있는 R3-GM1 에 대해서는 4 등분하여 슬롯 2 \sim 5 에 모듈이 장착되어 있는 것으로 인식합니다 .

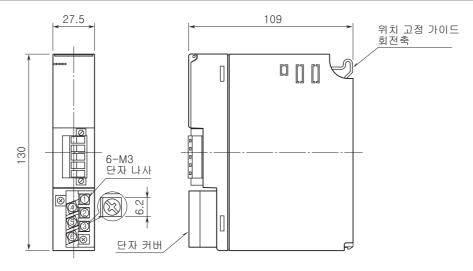


슬롯	실제 장착 모듈	가상 모듈	데이터 수
슬롯 1	R3-SV4	R3-SV4	4 워드
슬롯 2	R3-GM1	R3-GM1 (1/4)	16 워드
슬롯 3	미장착	R3-GM1 (2/4)	16 워드
 슬롯 4	미장착	R3-GM1 (3/4)	16 워드
<u>슬롯 5</u>	미장착	R3-GM1 (4/4)	16 워드
<u>슬롯 6</u>	미장착	미장착	_
 슬롯 7	R3-NC3	R3-NC3	_
 슬롯 8	R3-PS1	R3-PS1	_

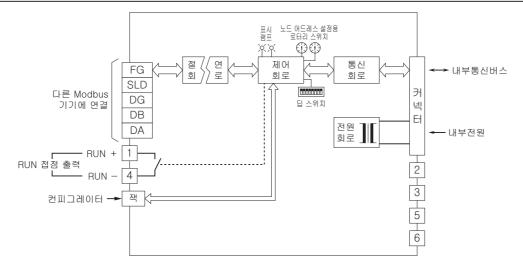

입출력 데이터

■모듈 정보, 데이터 이상 정보

각 슬롯의 점유 모듈 설정의 유무 및 이상을 표시합니다.

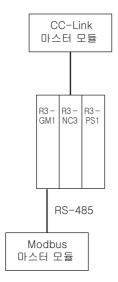


■아날로그 입출력 데이터



16 비트의 바이너리 데이터

외형 치수도 (단위:mm) &단자 번호도



블록도&단자 접속도

시스템 구성 예

게이트웨이로 사용되는 본 제품을 통해 Modbus 의 데이터를 CC-Link 의 데이터로 변환하는 경우의 시스템 구성은 아래와 같습니다.

예고없이 사양 및 외관의 일부를 변경하는 경우가 있습니다.